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Summary

Regional connectivity-based parcellation (rCBP) is a widely used procedure
for investigating the structural and functional differentiation within a region-of-
interest (ROI) based on its long-range connectivity. No standardized software or
guidelines currently exist for applying rCBP, making the method only accessible
to those who develop their own tools. A historical background to rCBP has been
provided in chapter 1, which continues with the aim of this work: introducing
CBPtools, an open-source software package implementing rCBP. The chapter
concludes by detailing various methods and concepts associated with the rCBP

procedure.

CBPtools is a Python (version 3.5+) package that allows users to run an
extensively evaluated rCBP analysis workflow on a given ROI. It currently
supports two modalities: resting-state functional connectivity and structural
connectivity based on diffusion-weighted imaging, along with support for custom
connectivity matrices. Analysis parameters are customizable, and the workflow
can be scaled to many subjects using a parallel processing environment.
Parcellation results with corresponding validity metrics are provided as textual
and graphical output. Thus, CBPtools provides a simple plug-and-play yet
customizable way to conduct rCBP analyses. Chapter two discusses
architectural choices, scope, and software dependencies, followed by a thorough
description of all implemented features as well as a step-by-step guide through

the processing pipeline.

In chapter three we demonstrate the utility of CBPtools using a
voluminous data set on an average compute-cluster infrastructure by performing
rCBP on three ROIs prominently featured in parcellation literature. A side-
project on the investigation of potential issues regarding outliers in the data set

is added as chapter four.

In closing we discuss our findings, provide recommendations, and suggest
future extensions to the CBPtools software in chapters five and six. CBPtools
is capable of reproducing parcellations found in existing literature. It offers
flexibility in terms of customization while remaining easy to use. By providing an
open-source software we aim to promote reproducible and comparable rCBP

analyses and, importantly, make the rCBP procedure readily available.
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Chapter 1: Background

BACKGROUND

Mapping the human brain in an effort to understand its organizational
principles is a monumental task, dating back to the early 1900's with
Korbinian Brodmann's famous publication on 'Vergleichende
Lokalisationslehre der Grophirnrinde' [Localization in the Cerebral
Cortex; Brodmann (1909)]. The advent of modern non-invasive in-
vivo neuroimaging technologies, such as magnetic resonance imaging
(MRI), has been a driving growth in this research field. Accompanying
progress in neuroimaging data analysis techniques allows a range of
connectivity measurements from various MRI modalities. Brain
organization can then be probed by analysing the patterns in these

measurements.

1.1 Connectivity-Based Parcellation

Early brain mapping studies used local histological (i.e., cytoarchitectonic
and myeloarchitectonic) properties to map cortical areas. Changes in local
properties (e.g., thickness of cortical layers, cellular composition, etc.) were used
to mark borders of otherwise homogenous areas. The Brodmann (1909) areas are
a pioneering exemplary work of this method, followed later by a more detailed
cortical atlas by von Economo and Koskinas (1925), who correctly assumed that
cytoarchitectonic differentiation relates to functional differentiation (Triarhou
2006) and could hence be used to localize brain function. Modern studies applying
histology-based parcellation of the brain use computational methods such as
border mapping (as opposed to manual delineation/drawing) to differentiate areas

within the brain. One such example is the JuBrain cytoarchitectonic atlas
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Chapter 1: Background

[available through the JuBrain Anatomy Toolbox; Eickhoff et al. (2005)] which
consists of cytoarchitectonic probabilistic maps of many brain regions. Using ten
human post-mortem brains, cytoarchitectonic areas were analysed using an
observer-independent border-mapping approach. This approach follows the
assumption that laminar patterns in the cytoarchitecture are similar within an

area but change abruptly at the border between areas.

While modern computation improves reproducibility, efficiency, and accuracy,
histology-based parcellation remains very labour intensive and lacks
generalizability due to small sample sizes, as it requires the acquisition and
processing of ex vivo materials (i.e., post-mortem tissue). In contrast, modern
neuroimaging techniques such as magnetic resonance imaging (MRI) are less
laborious and non-invasive as they allow for the in vivo acquisition of whole-brain
images. Connectivity measurements taken from various MRI modalities then
allow for the investigation of structural and functional differentiation in the brain.
Brain organization can subsequently be probed by analysing the patterns in these
measurements. One such technique is connectivity-based parcellation (CBP), an
umbrella term for a widely used and diverse set of procedures to delineate whole-
and regional brain organization, originally conceived by Behrens et al. (2003) in
their seminal work on the thalamus. Thalamic voxels were grouped based on
similarity in their connection strengths to the rest of the brain (using manual
delineation from similarity matrices), i.e., their connectivity profile, obtained
through probabilistic tractography on diffusion MRI (dMRI) data. Voxels
grouped together form homogeneous units, i.e., parcels, with regards to the
measured connectivity marker that best describes the input data at hand. These
parcels were validated by their correspondence to histologically delineated
thalamic nuclei. Cohen et al. (2008) applied the same method to resting-state
functional MRI (rsfMRI) connectivity markers (using a border-mapping approach
in line with traditional histological work), finding local transitions in patterns of
functional connectivity. Subsequent application of CBP using connectivity
markers derived from rsfMRI and dMRI data has been widespread. In addition
to being a less labour-intensive approach that can make use of large samples [e.g.,
the Human Connectome Project (HCP) data (Van Essen et al 2013), the
1000BRAINS study (Caspers et al 2014)], CBP methods can be used to map
functional areas. Taken together, this contributed to the rapid adoption and

increasing popularity of mapping the human brain using CBP.

CBP is appealing for its various applications, such as atlas mapping,

hypothesis generation, and location mapping [cf. Eickhoff et al. (2015)] among
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Chapter 1: Background

others. From a data processing point of view, it is a useful data compression
technique for dealing with large data sets as well as complicated and time-
consuming processing and analysis approaches. Questions regarding the brain’s
architecture such as whether the brain consists of highly specialized units (i.e.,
brain regions) each responsible for a particular set of functions (as opposed to a
general-purpose device), and the degree of such specialization have been debated
and investigated for over a century. Such highly specialized regions have been
found not only for low-level function (e.g., sensory and motor processes), but also
for high-level function (e.g., language, facial and place recognition, and more) [cf.
Kanwisher (2010)]. Due to its ability to find local transitions in patterns of
functional connectivity, the CBP procedure is effective in finding answers to
questions regarding functional specialization and differentiation at the granularity

of the whole-brain or a single delineated region.

CBP is an automated procedure that divides a region of interest (ROI) into
functionally distinguishable and often spatially consistent parcels. The
parcellation of grey matter into functionally specialized parcels is a useful
approach to create a compression model of an ROI. Voxels within a parcel are
homogeneous in connectivity profile to one another, relative to voxels outside of
the parcel. Hence, the procedure functions as a data reduction method, as analyses
can now be performed at the more manageable level of parcels, rather than at the
level of voxels. While connectivity profiles across a parcel may vary (van den
Heuvel and Hulshoff Pol 2010; de Reus and van den Heuvel 2013), these variations
are expected to be smaller than those between parcels. Therefore, despite being a
simplified data representation, parcels and by extension their borders are
meaningful and reproducible. The approach can be applied to an ROI covering
the whole brain resulting in a 3D brain atlas, where the connectome is now a
parcel by parcel matrix, rather than a much larger voxels by voxels matrix (Smith
et al 2013). Alternatively, an ROI covering only a predefined segment of grey
matter can be used to investigate whether the ROI contains functionally distinct
subunits (i.e., parcels), how they are shaped, and where they are located.
Predominantly, connectivity profiles of ROI voxels cover all grey matter voxels
in the brain. Approached differently, target regions can be predefined based on a-
priori hypotheses (e.g., using only regions that have been associated with the ROI
in existing literature, or regions that have a specific behavioural relation), creating
an organizational model of the ROI restricted to a particular behavioural or
structural domain. Note that regardless of the chosen approach, there is no one

true parcellation as many different criteria can be used to segment an ROIL.

18



Chapter 1: Background

Instead, the CBP approach defines the most optimal subdivision of an ROI given

the characteristics of the underlying data.

The CBP procedure furthermore provides a map of the ROI, as opposed to
mapping cognitive and behavioural aspects or the effects of (dys)function onto
regions in the brain. The former explains the neurobiological profile of the ROI,
i.e., its segmentation based on the measured functional or structural properties,
whereas the latter only localizes a singular effect constrained by experimental
design and ignorant of the underlying neurobiological composition (e.g., cell
structure, thickness of cortical layers, etc.). As such, the former can provide a
map of the functional segregation of parcels, whereas the latter cannot be used
for constructing a map of the brain. In tandem, however, the former may inform
the latter to improve the precision of the localization (Devlin and Poldrack 2007).
Furthermore, CBP can be used for generating novel hypotheses (Eickhoff et al

2015) by investigating the existence of CBP-derived substructures within an ROL.

In this work sole focus will be placed on regional CBP (rCBP), an approach
that aims to investigate the structural and functional differentiation within a
delimited area of grey matter (as opposed to the whole brain) based on its long-
range connectivity. Unlike whole-brain CBP where the area to be parcellated
consists of all the grey matter (Schaefer et al 2018), rCBP focuses on a particular
ROI, hence allowing an in-depth analysis by uncovering the internal
differentiation of a region. A common approach to mapping the human brain
through rCBP is to cluster voxels/vertices into parcels. A clustering algorithm is
used to group voxels/vertices within a given ROI based on similarity in their
connection strengths to a set of target voxels/vertices, i.e., their connectivity
profile. Voxels clustered together form homogenous units, i.e., parcels, with
regards to the measured connectivity marker that best describes the input data
at hand. The parcels are often spatially consistent as neighbouring voxels usually
exhibit more similar connectivity patterns than those further away. Thus, the
rCBP procedure can map functional or structural subdivisions/clusters within a
particular ROI. rCBP derived parcels are known to match with histological
parcellation (Bzdok et al 2013), but they may also provide subdivisions pertaining
to different sources of information not revealed by cytoarchitectonic mapping
alone (Clos et al 2013). As each MRI modality yields a different aspect of brain
connectivity, rCBP on each modality can yield differing parcellations with
different interpretations. Commonly used imaging modalities include, but are not
limited to, resting-state blood-oxygen-level dependent (BOLD) time-series used

to measure task-independent functional connectivity, diffusion-weighted imaging
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(DWI) based probabilistic diffusion tractography to estimate anatomical fibre-
connectivity, as well as meta-analytic connectivity modelling (MACM) as a
measure of task-dependent functional connectivity and co-activation patterns.
Due to the different interpretations that may result from each modality, a
multimodal approach [e.g. Genon et al. (2018) and Plachti et al. (2019)] may be

used to compare unimodal parcellations.

1.2 Motivation and Aim

Despite its popularity, no standardized software or guidelines currently
exists for applying rCBP, making the method only accessible to those who develop
their own tools. It is therefore a challenging and time-consuming procedure to
employ. As neuroscience makes a transition towards big-data, with prominent
examples such as the HCP (Van Essen et al 2013), and the 1000BRAINS study
(Caspers et al 2014) having well over a thousand subjects, it becomes an
increasing necessity to add support for high-throughput computation and parallel
processing. Furthermore, the numerous options available at each step of the rCBP
procedure paired with the absence of uniform guidelines make it difficult to have
comparable results. For example, choice of clustering algorithm may influence the
clustering results, with options such as k-means clustering, spectral clustering, or
hierarchical clustering (Von Luxburg 2007; Hastie et al 2013).

To resolve these issues, CBPtools, an open-source distributed workflow for
rCBP enclosed in a Python package, is introduced. By unifying the
methodological choices behind the procedure into a customizable workflow, it
offers a fast, stable, and reproducible means to parcellate brain regions.
Furthermore, computational demands highlighted by complex algorithms and
large data sets are mitigated by efficient parallel execution of the procedure.
CBPtools offers a common working ground to conduct reproducible and data-

driven parcellation analyses effortlessly and efficiently.

CBPtools parcellates an ROI and provides the output as NIfTT images along
with commonly used cluster-validity metrics. The tool's approach and methods
are derived from a substantial body of parcellation works (Wang et al 2015; Bzdok
et al 2015; Chase et al 2015; Barron et al 2015; Hardwick et al 2015; Eickhoff et
al 2016; Muhle-Karbe et al 2016; Genon et al 2017; Genon et al 2018) and consists
of a customizable rCBP workflow allowing users to specify the input data and a
range of parameters through a configuration file. CBPtools can calculate

connectivity matrices from resting-state or DWI data, but they may instead be
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provided directly as input. It then computes parcellations based on the
connectivity matrices (projected onto NIfTI images of the ROI and as NumPy
array files, as well as 3D voxel plots) and outputs validity metrics for their
evaluation. Note that the procedure outlined here utilizes hard clustering.
Therefore, when connectivity markers are assumed to change through soft
transition (i.e., showing a gradient), parcels generated through this procedure
should not be interpreted as neurobiological units but as a simplified data

representation (or compression model).

1.3 Measures of Brain Connectivity

Rather than using data obtained through histology, CBPtools relies on
measures of connectivity obtained through neuroimaging techniques such as MRI.
CBPtools is (currently) capable of interpreting the two most frequently used MRI
data modalities: rsfMRI data for functional connectivity, and dMRI data for
anatomical connectivity. Various other connectivity modalities popular in rCBP,
such as MACM and structural covariance (SC) are viable contenders to extend
the breadth of CBPtools, made possible by CBPtools” modular implementation
(see Ch. 2 [p. 38]) and open source distribution. Despite different neurobiological
properties showing similar patterns of organization (von Economo and Koskinas
1925; Zilles et al 2002) and convergence between prior brain maps (e.g.,
cytoarchitectonic maps) and rCBP-derived maps being used as an external
validity metric, by no means is there a gold-standard measure of connectivity [or
parcellation method, for that matter (Eickhoff et al 2018)]. Importantly, the
selected connectivity measure critically influences the interpretation of the

ensuing parcellation.

1.3.1 Resting-state functional MRI

Functional MRI measures brain activity as it changes in (near) real time by
detecting the changes in the level of oxygen in the blood. It exploits the
correspondence of blood-oxygen-level to neuronal activity using the BOLD
contrast (Ogawa et al 1990), which is a measure of the oxygenated to
deoxygenated haemoglobin ratio. Haemoglobin transports oxygen throughout the
body, including the brain, and has different magnetic properties when it is
oxygenated as to when it is not carrying oxygen. Current theory proposes that
active brain areas require more oxygen than inactive areas, hence during activity

the blood vessels expand allowing for a larger influx of oxygenated haemoglobin.
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Chapter 1: Background

This influx causes the BOLD signal to rise considerably and quickly, known as
the BOLD response. The (near) real time nature of this neuroimaging method
allows for the detection of changes in brain activity when performing tasks or at

rest.

For rstMRI the aforementioned approach is used to measure intrinsic brain
activity in a resting (i.e., task-negative) state. That is, even when tasks are not
actively performed, cortical activity still reflects consistent patterns of activation
in the form of low frequency (~0.1 Hz) fluctuations structured as repeatedly
(re-)emerging anti-correlated functional networks (Biswal et al 1995; Raichle et
al 2001; Fox et al 2009; Deco et al 2011). Spontaneous activity is not random, as
it reveals the organization of coherent functional networks. rsfMRI can therefore
be used to explore the functional organization of the brain and map functional

networks.

CBPtools assumes that the rstMRI data has been treated with necessary
fMRI pre-processing (e.g., head-motion estimation, slice time correction,
susceptibility distortion correction, confound estimation) including realignment
and normalization to a template space. Denoising based on independent
component analysis like Automatic Removal of Motion Artifacts (ICA-AROMA)
(Pruim et al 2015) or FMRIB’s ICA-based X-noiseifier (FIX) (Salimi-Khorshidi
et al 2014) is encouraged if suitable. FIX in combination with mean white matter
and cerebrospinal fluid signal regression has been shown to work well in the
context of rCBP [i.e., improved cluster stability and consistency of clusters
between neuroimaging modalities (Plachti et al 2019)]. CBPtools only includes
pre-processing facilities to perform band-pass filtering, spatial smoothing, and
nuisance signal regression (see Sect. 2.6.2 [p. 54]). One possible all-in-one pre-
processing pipeline for fMRI data is fMRIPrep (Esteban et al 2019) which, like
CBPtools, is a Python-based free and open source software package. Alongside
using several popular Python packages for handling neuroimaging data (e.g.,
NiBabel (Brett et al 2019) for NIfTT image handling, nitime (Rokem et al 2009)
for time-series analysis, and nipype (Gorgolewski et al 2011) for facilitating
interaction between various neuroimaging software) it makes use of various
neuroimaging tools that are commonly used for pre-processing MRI data, such as
FSL (Jenkinson et al 2012), ANTs (Avants et al 2011), AFNI (Cox 1996),
FreeSurfer (Dale et al 1999; Fischl et al 1999), and more. Note that fMRIPrep

was not used to pre-process any of the data included in this work.
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To obtain rsfMRI connectivity markers for a given ROI, the subject-wise
time-series of the ROI voxels and a set of target voxels (e.g., whole-brain grey
matter voxels) are correlated. The correlations between one seed voxel and all
target voxels form the connectivity profile of that seed voxel. Connectivity is
calculated using linear correlations between the ROI voxels of the timeseries of a
subject (x), and the target voxels of the timeseries of the same subject (y). The
target can be any part of the brain, although in the example data used here (see
Ch. 3 [p. 78]) a subsampled whole-brain grey matter mask is applied (for an
explanation of subsampling, see Sect. 2.6.1 [p. 52]). Both x and y are first
standardized and then correlated by transposing y and taking its dot product of
x, dividing this by the number of voxels in x and transposing the result again (for
a code example, see Sect. 2.6.2 [p. 54]). In the event there are voxels without
sufficient variance (i.e., variance not exceeding a threshold of the smallest
representable number in Python’s NumPy package, np.finfo(np.float32).eps )
within either the target or ROI masked time-series, the standardization will have
failed (i.e., a division by zero will have occurred on account of the standard
deviation being zero). Hence, all correlations resulting from a computation with
a ‘not a number’ (NaN) element are set to zero. If a Fisher’s Z transform is to be
performed on the connectivity matrices, then values at precisely 1 or -1 will result

in an infinite value. To prevent this, they are set slightly below 1 and above -1

(resp.).

1.3.2 Diffusion-weighted MRI

dMRI exploits the diffusion of water molecules to obtain a magnetic
resonance contrast. Patterns in water molecule diffusion can reveal details about
tissue architecture, as the Brownian motion of the water molecules will not be
spherical (i.e., anisotropic) when blocked unevenly (i.e., from a particular
direction). In white matter it is assumed that the water molecule diffusion is
blocked primarily by axonal myelin sheaths, hence it can be used for fibre
tractography. When blocked the diffusion will be elliptical, aligned along the
orientation of the fibres. This technique is called diffusion tensor imaging (DTT).
By using this technique fibres can be identified which can be further processed to

provide a measure of connectivity between regions in the brain.

For CBPtools, the raw anatomical and diffusion data must first be pre-
processed to the point where the data can be used as input to FSL’s probtrackx?2

tool. Common pre-processing steps for dMRI data include brain segmentation and
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skull stripping, bias correction, eddy current correction, and estimation of the
diffusion data. FSL’s bedpostx must be used for the last step, as only this tool
provides the necessary input for probtrackx2. The dMRIPrep software (Richie-
Halford et al 2020), an fMRIPrep inspired processing pipeline intended for

diffusion data, can be used for pre-processing.

First, the T1-weighted (T1w) anatomical image must be skull-stripped. There
are various approaches to skull stripping, each with their own advantages and
disadvantages (Kalavathi and Prasath 2016). A popular approach is to segment
the T1w anatomical image into different tissue types and subtract the skull from
the original image. The resulting image can be binarized to serve as a whole-brain
T1w mask. Bias correction is used to remove intensity bias from regions where
the intensity should be equivalent. That is, visual observation of the raw diffusion
image may reveal variations in the intensity contrast of cortical regions. Since
there is no diffusion in cortical grey matter regions the intensity should not differ.
Eddy current correction corrects for distortions and alignment issues that may
have occurred due to head movement during the acquisitions of the diffusion data.
Every few acquisitions there will be a maximum intensity acquisition (b0). The
b0 acquisitions can be realigned to one another as they do not differ in intensity.
The realignment parameters can then be used to correct distortions in acquisitions
between the b(’s. Following this, the whole-brain T1w mask is linearly co-
registered to an average of the diffusion data to bring the mask to diffusion space.
Linear image co-registration can be used when both the mask and the diffusion
data are from the same subject (i.e., native). Warp fields must then be created
between the diffusion space and a common reference space, e.g., Montreal
Neurological Institute (MNI) 152 space, to allow further outputs to share the
same space and thus be comparable. The diffusion parameters can then be

estimated using bedpostx. Output from this tool can be used as input for
CBPtools.

Connectivity markers for dMRI are obtained using probtrackx. This tool
produces sample streamlines to identify the number of streamlines that pass
through or connect voxels, known as the connectivity distribution. It iteratively
uses the voxel-wise bedpostx distributions on diffusion parameters to draw an
orientation, move in that direction, and assess whether there are termination
criteria. In doing so, it takes crossing fibres into account. CBPtools uses the ROI
as a seed region from which the streamlines originate, so that probtrackx can find
where streamlines connect to in a target region (commonly the whole brain). This

results in an ROI by target connectivity matrix.
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1.3.3 Other measures

Other measures of connectivity that are commonly used in the context of
rCBP are MACM and SC. These measures differ from the aforementioned in that
they are based on covariance measurements across a pool (i.e., a pool of studies
for MACM, and a pool of subjects for SC). This means that the connectivity
markers are derived at the group level, rather than at the subject level as is the

case for rsfMRI and dMRI-based connectivity markers.

The MACM procedure uses coordinate-based peak activations from many
published functional neuroimaging experiments, constrained by relevant search
criteria in the form of taxonomic categories (e.g., neuroimaging modality,
functional /behavioural association, gender, etc.). The studies these peaks are
derived from are aggregated in databases such as BrainMap (Fox and Lancaster
2002), Neurosynth (Yarkoni et al 2011), and NeuroVault (Gorgolewski et al 2015).
Co-activation likelihood estimation (Eickhoff et al 2012) is then used to find
convergence across studies, under the assumption that functional connectivity
between brain regions reliably co-activates. Co-activation between each ROI voxel
and all voxels in a target area (e.g., the whole brain) then functions as that voxels’
connectivity profile. Taken together, this forms the ROI voxel by target voxel
connectivity matrix taken over a group of studies. SC instead describes the
correlation between anatomical metrics such as cortical thickness or volume
between pairs of voxels (Wright et al 1999), e.g., each ROI voxel to a set of target
voxels, over a pool of subjects. What results here is again one group connectivity
matrix containing the correlations between the anatomical metrics over a pool of

subjects.

Aside from the modalities mentioned here, CBPtools can also interpret
connectivity matrices given directly as input. Therefore, any measure of

connectivity can be used to obtain parcels, despite the measure not being executed
by CBPtools.

1.4 Clustering Techniques

Clustering, within the context of rCBP, is a procedure to group (i.e., cluster)
a set of voxels such that within-group similarity of their connectivity profiles is
high whereas between-group similarity is low. There are various algorithms that
can be used for clustering a set of voxels that each differ in their own respects.

Each clustering algorithm has a different approach to forming and finding clusters;
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hence the understanding of the resulting clusters is likewise different. Furthermore,
each clustering algorithm can be fine-tuned with a range of parameters, the values
of which depend on the data set and the purpose behind the clustering. The fine-
tuning, as well as parameter selection, is therefore an iterative process using prior
knowledge to obtain the most biologically meaningful results. For all clustering
algorithms listed here, the input is an ROI voxel by target voxel connectivity
matrix (see Sect. 1.3 [p. 21]). That is, the ROI voxels are the samples and the

connectivity to all target voxels (i.e., the connectivity profile) are the features.

1.4.1 k-means clustering

k-means clustering is a centroid-based clustering algorithm in which a cluster
is formed around a centroid. First, k cluster centroids are randomly chosen from
all samples (i.e., seed voxels; dotted circles in Fig. 1). Each sample is assigned to
its nearest centroid by computing the squared Euclidean distance of the sample’s
features (i.e., the connectivity profile of the seed voxel) to each of the centroids
and assigning the sample to the centroid it is closest to (see samples A through
G in Fig. 1). Once all samples have been assigned, each centroid is reassigned to
the mean of all samples assigned to it. Samples are then re-assigned to their
nearest centroids again. These steps iterate until either n iterations (commonly
10.000) have passed, or until the difference between a centroid’s original
assignment and its reassignment is smaller than a predefined tolerance value. To
offset the random nature of the initial centroid selection, the entire procedure is
repeated 7 times [commonly 256 for rCBP, as suggested by Nanetti et al. (2009)],
resulting in a cluster solution that has the best ratio of low within-cluster distance

to high between-cluster distance.

The k-means algorithm is relatively simple to implement and efficient for a
large variety of data types, hence it enjoys a great deal of popularity in the
scientific community. It is fast and efficient in its computational cost and
compared to agglomerative and spectral clustering, k-means is the faster
algorithm (its time complexity is often classified as O(n), i.e., linear in the number
of data points). However, this depends on the number of iterations required to
reach convergence which is hard to classify as it depends on the data and initial
seed. While the algorithm is effective for a large variety of data types, it assumes
the clusters in the data should have a notion of a centre, are of uniform size, and
are spherical (i.e., the mean of each cluster converges towards its centre and the

nearest cluster centre is the correct assignment). Despite this, k-means does not
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consider the size of the clusters. Results of the algorithm can vary depending on
the initial choice of seeds (i.e., the selection method of the cluster centroid), which
may result in convergence to a local minimum (as opposed to the more desired
global minimum). This can be mitigated (but not fully overcome) by both having
a large enough 7 and using an initialization algorithm such as k-means++ which
spreads out the initial cluster centroid assignments. Furthermore, k-means does
not optimize the number of £ clusters, but instead takes it as an input parameter.
That is, k-means will always return the defined k£ number of clusters, yielding
poor results when set inappropriately. The choice of k is often ambiguous and
depends on the scale and distribution of the data (i.e., the ROI and its
connectivity profiles), hence requiring validation (see Sect. 1.5 [p. 30]). To
accommodate validation, it is advised to explore a range of k. Lastly, the k-means
algorithm can be sensitive to outliers. An outlier as a starting seed may result in
a cluster of its own, whereas the assignment of an outlier to one cluster from

another may impact the means of both clusters changing them considerably.

Figure 1 k-means clustering example. This example illustrates the assignment of samples
(i.e., seed voxels) A through G to their nearest cluster centroid (dotted circles) for a 3-cluster

solution (the blue, green, and red areas representing the clusters)

1.4.2 Spectral clustering

Spectral clustering is an affinity-based clustering algorithm which, in simple
terms, performs dimensionality reduction prior to applying a standard clustering
algorithm (e.g., k-means). First, a similarity graph, i.e., a graph representing the
relationship between the samples, is created (see the graph on the left of Fig. 2).
There are various ways to approach this, such as computing a graph of nearest
neighbours or using a radial basis function kernel. Regardless of the chosen

algorithm, it must produce similarity scores, i.e., non-negative values that increase
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with similarity. The affinity matrix of this graph contains values expressing how
similar the samples are to one another (see the matrix on the right of Fig. 2 for
an example of an unweighted affinity matrix). The degree matrix of the similarity
graph is a diagonal matrix containing the degree (i.e., the sum of the similarity
values for each sample) on the diagonal. The graph Laplacian of the similarity
graph is given by subtracting the affinity matrix from the degree matrix. The
samples are then embedded in a low-dimensional space (i.e., spectral embedding)
by computing the first k eigenvectors of the graph Laplacian as a feature vector
for each sample, where k is the desired number of clusters. This results in a

samples by features matrix serving as input for a clustering algorithm.

A key strength of the spectral clustering algorithm over the k-means
algorithm is that it does not make strong assumptions on the statistics of the
clusters (i.e., the form/shape of the clusters). Furthermore, unlike k-means, it is
not at risk getting stuck in local minima and therefore does not require multiple
initializations. It can also be implemented efficiently for large data sets as the
adjacency matrix is sparse. That said, very noisy datasets can cause problems, as
the most informative eigenvectors are not necessarily the top ones. Computing
the eigenvectors is also a computational bottleneck. In terms of computational
efficiency, spectral clustering is the slowest out of the three listed algorithms (with
a time complexity of 0(n?®), where n is the number of data points). The choice of
a good similarity graph is furthermore not trivial (Von Luxburg 2007), and the
algorithm is quite unstable under different choices of parameters for the similarity

graph.
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Figure 2 Spectral clustering example. A similarity graph of nodes A through G (left)
representing seed voxels, and an unweighted affinity matrix (right) showing the connection

between seed voxels
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1.4.3 Agglomerative clustering

Agglomerative clustering is a ‘bottom-up’ hierarchical clustering technique in
which each sample is initially considered to be a cluster of its own.
Samples/clusters are iteratively merged until the desired number of clusters has
been reached (see Fig. 3). Comparatively, divisive clustering, a ‘top-down’
hierarchical clustering algorithm, instead initializes with all samples being part of
one big cluster which is gradually subdivided. First, a proximity matrix is
calculated which contains a measure of similarity or distance (e.g., Euclidean or
Hamming distance) between the samples/clusters. The two most similar (or
closest) clusters are merged, and the proximity matrix is updated until the desired
cut-off point (i.e., £ number of clusters) has been reached. Since clusters (at
iterations higher than the initial iteration) consist of more than one sample (i.e.,
seed voxels), there are various ways to calculate how close or similar clusters are.
For example, the single linkage algorithm uses the minimum of the distances
between all samples of two clusters, whereas the complete linkage algorithm
instead uses the maximum of the distances, and the average linkage algorithm
takes the average of the distances between all samples of two clusters. Therefore,
the optimal choice of linkage algorithm depends on the form of the data. The
single linkage algorithm is best for clusters of different sizes and shapes, but it is
also very sensitive to noise. The complete and average linkage algorithms are not

as affected by noise but have a larger bias towards global patterns in the data.

Agglomerative hierarchical clustering differentiates itself from k-means
clustering in that it does not initialize with a random seed (i.e., k-means initializes
with a random set of centroids that varies between initializations). Therefore,
when using the same parameters and data the hierarchical clustering algorithm
will always provide the same results. In terms of computational efficiency,
agglomerative clustering lies in between the k-means clustering and spectral
clustering algorithms (with a quadratic time complexity, i.e., 0(n?)). Since the
merges of data points (i.e., voxels) are final (as opposed to k-means, where
reassignment can take place during each iteration), problems may occur with

noisy, high dimensional data.
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Figure 3 Agglomerative clustering example. Seed voxels A through G are iteratively merged

into clusters (bottom to top) until the desired number of 3 clusters has been reached (dotted line)

1.4.4 Alternative Procedures

Instead of employing an unsupervised machine learning algorithm, other
(non-clustering) procedures may be used. For example, probabilistic, graded
(Bajada et al 2017), or boundary mapping (Cohen et al 2008) approaches are also
employed. Probabilistic or ‘soft’ approaches, such as fuzzy c-means clustering
(Bezdek et al 1984) and independent component analysis (ICA) provide
continuous and probabilistic clusters that may overlap with one another, as
opposed to the discrete and binary ‘hard’ clustering approaches described in the
previous sections. When suspecting functional gradients in the ROI, e.g.,
retinotopic or tonotopic maps in visual and auditory regions, respectively, a ‘hard’
clustering approach that clearly separates clusters may not be appropriate. In
such cases, graded mapping approaches such as spectral reordering may reveal
the underlying neurobiological structure of the ROI more accurately. Boundary
mapping, on the other hand, identifies abrupt local changes between the
connectivity profiles of voxels to identify the borders between adjacent clusters
rather than identifying clusters as a grouping of voxels. Hence, borders rather

than clusters are established to divide an ROIL.

1.5 Cluster Evaluation

Finding the appropriate number of clusters is a challenging and unresolved
problem. There may not even be a true number of clusters as the brain has a

multilevel organization (Eickhoff et al 2018). It is common to probe a range of k
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values starting at two to a number determined through prior knowledge of the
ROI and the source data (i.e., based on neuroimaging modality, granularity of
the data, or the selected target regions) structure. Therefore, the clustering
solutions at different k£ need to be evaluated. One possibility is using external
validation which contrasts the clustering solutions against a predetermined
structure, which is independent on the source data (i.e., using a predefined
cytoarchitectonic parcellation as an external reference for clustering results of the
same region). In the absence of information for external validation (as is
frequently the case), internal cluster validation can help to select an optimal
clustering in a data-driven way. Several such metrics can be used to rank the
clustering results. However, different metrics often produce divergent results.
Baarsch et al. (2012) evaluated the Dunn index, the Davies-Bouldin index, the
Calinski-Harabasz index, the Silhouette index, the Point Biserial measure, the
Pakhira-Bandyopadhyay-Maulik score, and Sum-of-Squares, concluding Sum-of-
Squares to be most effective, followed closely by the Silhouette index. Popular
alternatives like the Davies-Bouldin index and the Calinski-Harabasz index were
only moderate contenders, while the Dunn index performed poorly. Even the best
measure, however, was only correct in 60% of the test-cases. Nevertheless, validity
metrics are often tested on simulated or simple data sets which might not
generalize to the complexity inherent in the connectivity data. Furthermore,
many more validity metrics exist [such as the I index, which was tested to perform
well in a review by Maulik et al. (2002)]. In general, it is difficult to deem any
single validity metric to be good for clustering as data properties may vary
significantly between data sets. Therefore, C'BPtools provides several validity

metrics. Sufficient care must be given when deciding which measure to rely upon.

1.5.1 Silhouette Coefficient

The name of the Silhouette coefficient is derived from a technique that
provides a graphical representation of clusters based on their dispersion and
separation, showing which samples lie within and which samples lie between
clusters (Rousseeuw 1987). It provides a measure that indicates how similar a
sample is to the cluster it has been assigned to (i.e., how well the sample has been
clustered). The measure ranges between -1 and +1, where a positive value
indicates that the sample is more similar to its own cluster than to the nearest
neighbouring cluster. A value near 0 indicates overlapping clusters, whereas
negative values indicate samples have been assigned to the wrong cluster. In the

case of low or negative values, a different number of clusters may provide a better
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fit for the data. It is calculated using the mean intra-cluster distance and the
mean nearest-cluster distance for each sample, where any distance metric can be
used (e.g. Euclidean distance or Hamming distance). The average silhouette score
over all clustered samples is then used as the coefficient representing how well the

data has been clustered.

1.5.2 Davies-Bouldin Index

Introduced by Davies and Bouldin (1979), the Davies-Bouldin index
evaluates the similarity within a cluster and differences between clusters. In the
ideal case, the similarity within a cluster is high (i.e., less dispersion), whereas the
similarity between clusters is low (i.e., clusters are farther apart — more
separation). As such, it can be defined as the ratio of inter-cluster distances to
intra-cluster distances. The measure has a minimum value of 0 without an upper

bound, where a lower value indicates a better clustering.

1.5.3 Calinski-Harabasz Index

The Calinski-Harabasz index, also known as the variance ratio criterion, was
proposed by Calinski and Harabasz (1974) as a method of cluster analysis. Like
the Silhouette coefficient and the Davies-Bouldin index, it makes use of the ratio
of inter-cluster dispersion and intra-cluster separation. The inter-cluster
dispersion is the sum of squares of the distances between the centre of each cluster
and every point in the cluster. The intra-cluster separation is the sum of squares
of the distances between the centre of each cluster and the centroid of the data
set weighted by the size of the cluster. Unlike the Davies-Bouldin index, which
also uses cluster centres for calculating separation, the Calinski-Harabasz score

uses the centroid of the entire data set instead of the other clusters.

1.6 Open Science

A fundamental aspect of science is the distribution of peer-reviewed scientific
results, fostering an environment for collaboration, critiquing, replication, and
recycling both data and code. Several obstructions exist that hinder the growth
of such an environment, such as paywalls of for-profit publishers, usage
restrictions on published data, and the lacking availability of source code. The
open science movement aims to break these barriers by making scientific research,

i.e., publications, data, and software, openly available to anyone. Open science is
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considered an umbrella term for five proposed schools of thought on the creation
and dissemination of scientific results. Each school of thought is concerned with
a different aspect of open science [i.e., technological architecture, accessibility of
knowledge creation, impact measurement, collaboration, and access to knowledge
(Fecher and Friesike 2014)]. Overall, the aims of each school of thought benefit
transparency, accessibility, and collaboration causing the quality and impact of
new scientific developments to grow. As a result of the movement, many journals
now require the publication of code and data along with results, and universities
and research centres across the globe increasingly adopt open access policies for

affiliated publications.

The open science concept is closely tied to (and encompasses) the open-source
model for software. Open source practices, such as source code publication on
software forges (e.g., GitHub, GitLab, SourceForge, bitbucket, etc.), encourage
collaboration and transparency, which in turn complements traditional software
development (i.e., top-down) with distributed labour and intelligence (i.e.,
bottom-up) (Riehle et al 2009). The transparent nature of open-source projects
furthermore helps with the discovery of software flaws/bugs which is particularly
important when scientific results depend on (or are derived with) the underlying
software. Collaborative efforts have resulted in tools that are widely used in the
scientific community, enhancing replicability and reproducibility of results, and
further stimulating the creation of new tools (i.e., by building upon existing open-
source software). For example, CBPtools is written in Python which is developed
under an OSI-approved open-source license. Several open-source Python packages
(e.g., NumPy, SciPy, scikit-learn, NiBabel, and snakemake) without which the
development of CBPtools would not be feasible are made use of. Over the years
the Python programming language has become a valuable asset to the data science
community by virtue of its ease-of-use, open-source license, wide applicability,
and vast library of specialized packages. The PYPL index!, which indexes the
popularity of programming languages based on how often users search for a
tutorial of the language on Google, shows a steady growth in popularity of Python,
whereas MATLAB, a non-free closed-source language, is in decline (see Fig. 4).
The rise in popularity of Python is furthermore captured with other metrics, such
as GitHub unique contributions® and the TIOBE index®.

! http://pypl.github.io/PYPL.html (accessed 2/5/2020)
2 https://octoverse.github.com/ (accessed 2/5/2020)
3 https://www.tiobe.com/tiobe-index/ (accessed 2/5/2020)
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Figure 4 Popularity of programming language (PYPL) ratings. The popularity of the
three most common programming languages in Neuroscience, MATLAB, Python, and R, are
displayed in blue, red, and yellow, respectively. Time is on the x-axis, whereas the share of search

results in on the y-axis (i.e., as of this writing Python sits at a 29.88% share).

CBPtools is distributed under an open-source license and the source code is
made available on GitHub!. Furthermore, the software is available on Python’s
official third-party software repository, the Python Package Index (PyPi), which
is used as a default source for the pip package manager (which is Python’s default
package manager and is distributed along with it). By unifying the methodological
choices behind the procedure into a customizable workflow, it offers a fast, stable,
and reproducible means to parcellate brain regions. Furthermore, the open-source
nature allows others to contribute to the code to improve and extend the

procedure.

! https://github.com/inm7/cbptools
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IMPLEMENTATION

CBPtools is written in Python (version 3.54) to exploit Python’s
prolific presence in the data science community and can be installed
with pip ((pip install cbptools ). Capitalizing on pre-existing and widely
used packages, such as NumPy, SciPy, NiBabel, and scikit-learn, a
range of methods needed for the rCBP procedure was made available.
Hence, the software is very accessible (on account of Python and its
libraries being free and open source), as well as compatible with many
operating systems. CBPtools makes use of snakemake (Koster and
Rahmann 2012), an easy-to-use and well-documented workflow
management system with parallel processing capabilities that allows
the workflow execution to be scaled to various processing
environments (i.e., server, cluster, grid, or cloud environments).
Through snakemake, CBPtools is compatible with job schedulers that
support shell script (such as SLURM or HTCondor). Furthermore,
CBPtools can be resumed with partially processed data (e.g., due to
hardware failure) making it stable and efficient for use on real world
data. The combination of snakemake’s command line execution and
an easily modifiable configuration file make it possible to set up and

run the software without any programming knowledge.
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2.1 Architecture

One of the aims in developing CBPtools was to make it easy to use while
maintaining modularity and expandability of the code. It was opted to use a
command line interface instead of a graphical user interface, as the former is
significantly easier to maintain and update. Importantly, users do not require any
programming knowledge to use the tool. Furthermore, using CBPtools requires
no training, although it is recommended to read the online documentation to gain

an understanding of the workflow procedure.

The CBPtools software can be roughly divided into three distinct parts. The
validation suite ensures the configuration file is interpreted correctly and evaluates
the input data. The workflow generator uses the input data and user configuration
to dynamically generate a Snakefile (i.e., a snakemake compatible workflow file).
Finally, the tasks module incorporates various internal and external functions for
producing the rCBP (interim) output. Each of these three parts can easily be

modified and expanded.

Possible future expansions should always remain within the scope of the
project. That is, support for more measures of connectivity, algorithms for cluster
separation, validity measures, and output formats. Notably, future additions
should restrict themselves to their respective parts. For example, a new
connectivity measure should not result in data that cannot be used seamlessly in
subsequent parts. Any such addition would require dependencies throughout the
processing pipeline which subsequent modifications would have to consider. As a
result, the software is at risk of becoming bloated and unmaintainable. Features
outside of the project’s scope, such as data pre-processing or outlier detection, are
better suited as stand-alone Python packages that support the same data formats
as CBPtools does.

2.1.1 Validation

The first step to perform rCBP with CBPtools is to create a configuration
file containing all relevant parameters with the users’ desired values. When the
user triggers the creation of a new project this file is loaded as a Python nested
dictionary using the pyyaml package. It is then passed as an argument to the
Validator class. This class uses a ‘YAML ain’t mark-up language’ (YAML)

schema that contains the rules/requirements for each parameter (i.e., key/value
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pair), such as whether the parameter is required, under what conditions it is used,
its default value, and so on. The below code snippet shows an example schema of

the binarization parameter used for mask pre-processing.

1. :

2. : float

3. : 0.0

4. : 0.0

5. | : [rsfMRI, dmri]]

6. : false

7. : "Threshold above which voxels in the ROI mask image are ..."

This is a non-required parameter of type float (i.e., a real decimal number) with
default value of 0.0. The default value will also be used when generating an
example configuration file. When defined, it cannot be smaller than 0.0 and it is
only used when the data set modality is either rsfMRI or dMRI (i.e., it is not
used when the input consists only of connectivity matrices). Lastly, the
parameter has a description which is used both as an inline code comment to
make collaboration more efficient, and for automatically generating the online
documentation section of the configuration parameters'. There are more built-in
rules/requirements (see Appx. 1) and a means to create custom rules (i.e., rules
that apply only to one parameter). Adding a new parameter is as simple as adding

a new entry to the schema.

The Validator class is instantiated when the cbptools create entry point is
used. It first iterates over all entries in the schema and creates a meta-data object
for each parameter. This is done to ensure that each parameter has the same
structure, and that only one class must be modified when parameter attributes
change. Each parameter rule/requirement is defined as a class method of the
Validator class and must be prefixed by _rule_ (j.e., _rule type() for validating
the object type of the parameter’s value). Custom rules are instead prefixed with
_rule custom_ . When a rule fails to be validated (e.g., the type should be float
but the value is a string ) a RuleError ig rajsed, which is caught and logged. Note
that the validation procedure only ends once the entire configuration file has been
assessed, so that the resulting log can be as descriptive as possible. However, even
one RuleError ig enough to fail validation. Rule methods are always passed the
parameter’s meta-data object. For custom rules it is furthermore possible to

reference the current class object (i.e., self ) to access other parameter values.

! https://cbptools.readthedocs.io/en /latest /configuration /parameters.html
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If needed default parameter values will be assigned and unused, empty, or
non-existing parameters are deleted. This will always be logged on the warning
level. The validated and cleaned configuration is then passed on as a nested
dictionary to the setup procedure. It is also stored as a YAML file in the project
directory, although it is only used as a user reference as the configuration values

are placed directly in the Snakefile.

The Validator clags is fast and efficient, intended only to capture mistakes in
formatting and parameter definitions. It is not intended to assess whether files
exist and have the proper type and meta-data. A more thorough evaluation of
the data set files is done instead by the Setup class which creates a DataSet object
of the relevant modality and evaluates the header information of all given files.
Only file headers were chosen to be evaluated as they provide sufficient
information for the marginal validation CBPtools performs, while significantly
reducing computation time for setting up the project. Despite this precaution, the
setup procedure is not fast. However, it is a crucial step to prevent faulty input
data from causing errors late in the workflow. Such errors may cause a significant

waste of compute time and resources, as interim data may need to be discarded.

The DataSet class has methods for evaluating modality-specific and modality-
agnostic files, the former of which are grouped by modality (i.e., all rsfMRI files
are evaluated in one class method). Once this validation is complete, the Setup
class then generates disk space and random-access memory (RAM) usage
estimates which Snakemake needs for some tasks when they are executed in a
cluster environment. Lastly, the Setup class executes the generation of the

workflow file and stores all relevant files in the user-defined project directory.

2.1.2 Workflow Generation

Each task in the workflow consists of a class which inherits its methods from
the BaseRule gsuperclass (note that tasks are called rules in Snakemake, hence the
terminology). Each task object is instantiated with a copy of the configuration
file and contains several default properties: the is active property returns True
if the task is being used in the current configuration of the workflow; and the
input | output = log =~ benchmark = threads = resources = params =~ run  apd shell
properties are each rule-contained parameter lists in the Snakefile syntax. These
parameter lists are expected to return either a dictionary (if used) or a None

object (if unused, i.e., an empty value).
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Each task class must start with the Rule prefix as this is used to collect all
available rules when building the workflow. When inheriting a method from the
superclass, its contents can be overwritten to allow each task to handle its
parameters differently when generating the output dictionary. Various helper
functions exist to assist in this, such as helpers for extracting values from the
configuration file and wrappers for formatting output such that it can be
interpreted by Snakemake. The RuleAll class is special, as it is always included
as the top-most task in the workflow. Snakemake uses this task as a starting point
for generating a directed acyclic graph, thus it must contain all the final output
the workflow will generate. An understanding of this structure is necessary to

create, modify, or expand workflow tasks (see Sect. 2.10 [p. 70]).

The build workflow ytility function evaluates the is active property of each
task and parses the properties of active tasks into the Snakefile. This file is saved
to disk as ‘Snakefile’ (no extension), as this is the default file name for a Snakefile.
Other file names are possible, although they then must be referenced by name

when executing Snakemake.

New workflow tasks can be added as a class inheriting the BaseRule guperclass.
The RuleAll class should only be modified if the task generates new output that
no other tasks rely upon, as Snakemake will not execute tasks for which there is
no expected output. No other tasks nor any workflow building utilities have to be
modified. The processing code for a task can be added as a function to the tasks
module (see next section). It is referenced in the run or shell parameter list.
Tasks are structured such that extending the workflow is simple and does not

require changing existing functionality.

2.1.3 Tasks module

Each task is associated either with a shell command or a Python function
that receives input and generates output (defined as a parameter list, as described
in Sect. 2.1.2 [p. 41]). The Python functions are part of the tasks module, which
contains a function for each relevant task. The arguments to the function are
passed from the task’s input = output = params and log methods as dictionaries.
No function in the fasks module has a return value. Instead, they each create or
copy one or more files to a location derived from the output dictionary. The

functions are called by Snakemake when the relevant rule is executed.
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2.2 Data Structure

The input data can be divided into modality-agnostic and modality-specific
categories. Modality-agnostic input data includes (1) a binary 3-dimensional
NIfTT ROI file in the 3-dimensional NIfTT image data format, (2) an optional 3-
dimensional target mask in the same data format, used to define the connections
that are considered for each ROI voxel. If not provided by the user, the FSL
distributed average MNI152 T1 whole-brain grey matter group template (2mm
isotropic) will be used as the target in which case the required input data should
match the same MNI152 template as well, and (3) a participants file as a tab-
separated text file with a column called participant id containing all unique

identifiers of the subjects to be included in the study.

Modality-specific data depends on the selected input modality, i.e., rsfMRI,
dMRI, or connectivity. For rsfMRI data, a 4-dimensional time-series NIfTT image
per subject must be provided, optionally accompanied by a tab-separated text file
containing confounds for each time point as columns (see Appx. 3 for an example
confounds table). The dMRI modality requires input necessary to perform FSL’s
probtrackx2, consisting of: (1) outputs from bedpostx, (2) a brain extraction
(BET) binary mask file, (3) a transform file taking seed space to DTI space (either
a FLIR matrix or FNIR warpfield; optional), and (4) a file describing the
transformation from DTI space to seed space (optional unless input file 3 is
defined). Each of these files is subject-specific and can be obtained from FSL's
bedpostx output. Connectivity matrices may be provided as source input in lieu
of rsftMRI or dMRI data. They must be provided in an ROI-voxel by target-voxel
shape, along with a binary 3-dimensional mask of the ROI in NIfTT image data
format, and a NumPy array of voxel coordinates in the order that the ROI voxels

are represented in the connectivity matrix.

To define input data for the rCBP procedure, the full file paths must be
added to the configuration file. CBPtools offers example configuration files using
the cbptools example —get data-modality command, where datatype is replaced by
either connectivity, rsfmri, or dmri, reflecting the different input data modalities.
The absolute file path for subject-wise files should be specified as a template, i.e.,
containing the string {participant id} which will be replaced by the ids of the
subjects included in the rCBP project (through the inclusion of the
aforementioned participants file). All input data should be quality controlled prior
to using CBPtools, as only marginal validation is performed on the input data.

Faulty data may halt processing until the issues are resolved, but in the worst

43



Chapter 2: Implementation

case such data may provide output without explicit warnings that this output
should not be trusted. Further specified during the setup are parameters to
transform the connectivity matrices (e.g., cubic or Fisher’s Z transform, or feature
reduction through principal component analysis), the clustering parameters (e.g.,
the range of k clusters requested) and validity measures, as well as the desired
output file formats. Each of these parameters are likewise specified in the

configuration file.

2.3 Dependencies

Python (version 3.5+) is required to install CBPtools. Aside from FSL’s
probtrackx, all dependencies are installed through the CBPtools setup.py file. The
following Python packages are required for CBPtools to work: matplotlib (3.0.3),
nibabel (>=2.5.0), numpy (>=1.17.0), pandas (>=0.25.0), pyyaml (>=5.1.1),
scikit-learn (>=0.21.3), scipy (>=1.3.0), seaborn (>=0.9.0), and snakemake
(>=5.5.4). Both matplotlib and seaborn are used in tandem to generate various
plots as output of the workflow. Nibabel is used for loading and handling NIfTT
images, including transformations. Numpy is used for performing various multi-
dimensional array manipulations (e.g., computing the connectivity matrices and
modifying NIfTT image data). Pandas is used for loading tab-separated files and
handling tabular data, and it conveniently interfaces with seaborn when
generating plots. Pyyaml is used for loading YAML files and converting them to
Python (nested) dictionaries, primarily used for interpreting the configuration file
and validation schema. Scikit-learn implements various clustering and cluster
validity algorithms, complemented by the large library of scientific functions
available from scipy. Lastly, snakemake is the workflow manager that makes
parallel processing and management of resources possible when executing the
CBPtools workflow.

FSL must be installed manually, as it is not available from the default
repositories and requires Python 2 to be installed. This dependency is only
required if the dMRI modality will be used, in which case it is recommended to
use a UNIX-based operating system (e.g., Linux or OS X). For such systems FSL
can be installed from the Neurodebian (Halchenko and Hanke 2012) repository.
On systems running Windows, the installation requires further steps as it either

uses the Windows Subsystem for Linux (Windows 10 only) or a virtual machine
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to emulate Linux. The FSL documentation has detailed

instructions on its

installation'.
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Figure 5 CBPtools workflow diagram. The rCBP procedure can be applied to dMRI (blue)

or rsfMRI (green) data separately. Steps marked with multiple boxes are executed in parallel, and

! https:

fsl.fmrib.ox.ac.uk /fsl /fslwiki/FslInstallation
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colours indicate procedures only applied to input data of the same colour. White boxes are applied

regardless of the type of input data.
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2.4 Workflow

Fig. 5 outlines the CBPtools workflow for applying the rCBP procedure to
rsfMRI, dMRI, or connectivity matrix data. After customizing the parameters of
the procedure, input data (A) is processed through each step (B through H) of
the workflow, culminating in the output (I). Note that the different types of input
are not processed in parallel but must instead be set up and executed as different
CBPtools projects. Each has the same section key (A) to highlight the different
types of input data CBPtools supports, and at what stage of the processing the

input data is used.

Different types of input may require different processing steps. These steps
are marked in different colours (i.e., green for rsfMRI, blue for dMRI, and yellow
for connectivity-matrix input data). Steps and procedures with a white
background apply to any input data. A quick-start guide containing example data
is provided in Appx. 9 as well as on the GitHub project page and online

documentation'.

2.5 Getting Started

The following sections outline how to install, configure, and execute the CBPtools
pipeline. A quick start guide is available in the online documentation, which

explains how to perform rCBP using CBPtools on a data set in four simple steps.

2.5.1 Installation

CBPtools requires a Python3 (>=3.5) installation. All its dependencies will
be installed except for the probtrackx2 tool from the FSL library. This tool is
necessary to perform probabilistic tractography on diffusion-weighted imaging
data. Hence, if no dMRI data is used then probtrackx2 is not necessary. To see
whether probtrackx2 is installed and accessible within the installation
environment, the terminal command below can be used. If it is not available,

the FSL installation manual®? can be consulted to install it.

$ probtrackx2 --help

! https://cbptools.readthedocs.io/en /latest /overview /quickstart.html

2 https://fsl.fmrib.ox.ac.uk /fsl/fslwiki /FslInstallation
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We recommend installing CBPtools within a virtual environment'. Any
packages installed within a virtual environment will not influence or be influenced
by packages outside of it. Hence, versions can be preserved within various analysis
environments. It can easily be set up using the venv tool which is packaged with
Python3. The command below will create a virtual environment called cbptools
in the .venv directory in the home folder. The second line activates the
environment. Although recommended, this is entirely optional.

$ python3 -m venv ~/.venv/cbptools
$ source ~/.venv/cbptools/bin/activate

CBPtools can be installed from the Python Package Index (PyPi) using the
pip package installer which, like venv, is packaged with Python3.

$ pip install cbptools

Alternatively, the development version can be installed directly from GitHub.

$ pip install git+https://github.com/inm7/cbptools

CBPtools and its dependencies will now be installed.

2.5.2 Setup

The first step to creating a CBPtools project is writing a configuration file.
This file contains the links to the data set that is to be used, as well as the
parameters for the tasks that will process the data. An example configuration file
can be obtained which will have a set of parameter and data keys containing
default and placeholder values in the YAML format. Note that before use the
placeholder data values must be changed to correctly point to the input data.
Certain required parameters do not have default values (i.e., the range of clusters
to obtain from the parcellation procedure) and must therefore be entered as well.
An example configuration file with the requested input modality can be obtained

by issuing the command below.

$ cbptools example --get modality

By changing the ‘modality’ argument to either ‘rsfmri’, ‘dmri’, or

‘connectivity’, an example file with parameters matching that input data type is

! https://packaging.python.org /guides/installing-using-pip-and-virtual-environments
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created. Not all parameter and data keys are represented in the example

configuration file. For a complete list of permitted keys, see Appx. 4.
There are three top-level keys in the file: modality, data, and parameters.

e Modality: CBPtools will expected this type of input data and handle
validation and setup accordingly. It currently accepts the supported data
modalities: ‘cstMRI’, ‘dMRT’, and ‘connectivity’ (Fig. 5A).

e Data: Within this key all external inputs to the workflow are defined.
Which files are expected depends crucially on the modality key. Input
data is described in more detail in Sect. 2.2 [p. 43].

e Parameters: A key that contains all the parameters for rCBP processing
as outlined in the workflow. All available parameters are described in

more detail in Appx. 4.

When both the input data and the configuration file are properly defined
(and quality controlled for the former), the setup procedure can be started to
create a CBPtools project folder.

$ cbptools create --config /path/to/config.yaml --workdir
/path/to/workdir

The --config (alternative -¢) parameter is used to define the path to the
configuration file. The --workdir (alternative -W ) parameter is used to assign the
directory in which the project files will be placed. This command will immediately
run the validation of the configuration file and input data. Upon success, a project
folder will be created at the --workdir Jocation (i.e., /path/to/workdir in this case).
Note that if the --workdir already exists and contains files, the --force argument
must be used to force the setup procedure into using that folder (and potentially
overwriting existing files). This is a safety measure to ensure the user is aware,

and agrees, that files may be overwritten.

2.5.3 Validation

The create command will validate both the configuration file and the data
set. The configuration file is parsed as a YAML file and then validated against a
schema containing the requirements each key and value pair must meet. If the
parsing fails or necessary requirements are not met, the create procedure will halt
without proceeding to validate the input data. Next, the input data is validated.

This validation is only marginal and focuses primarily on common mistakes that
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would hinder CBPtools from performing its processing. It is not recommended to
rely on it for ensuring the input data contains no flaws. File paths in the
configuration are automatically converted from relative to absolute paths. It is
recommended to use absolute paths to allow the inclusion of the configuration file
regardless of its location. This part of the validation takes longer, as each external
file is validated individually. When a file belonging to a subject fails to validate,
the subject will automatically be excluded from the project and the user will be

warned.

Once validation finishes (be it successfully or not) a log file is provided either
at the current location (in case of failure) or inside the project directory (in case
of success). The log file contains any error and warning given during the validation,
as well as information on the interpretation of the input data (e.g., which nuisance
signal regressors were found, if and where probtrackx2 was found, etc.). Reading

the log file is strongly recommended.

2.5.4 FEzecution

Successful completion of the create command will generate a project
directory at the specified --workdir Jocation. From within this directory the
workflow can be executed using the snakemake workflow management system,
installed as a dependency for CBPtools. Snakemake uses the project’s Snakefile,
a workflow generated from the configuration file in a snakemake compatible
format. Issuing the relevant snakemake command will start processing the data.
Below several common use-cases are listed. For a more in-depth description the

snakemake documentation! can be consulted.

$ snakemake -j 8 --resources mem_mb=20000

The command above issues a run using 8 threads and at most 20 GB of RAM.
Snakemake will automatically manage the allocation of jobs based on the available
resources. Commonly, the CBPtools workflow will be executed on a cluster
environment. The project will have a cluster.json fijle containing all relevant
cluster parameters. Generally, only the “_default " field requires customization
for the cluster the workflow is to be executed on. These default settings are
inherited for each task and only overwritten if defined for the task within the

cluster.json file. Note that any parameter used is provided in the --cluster

! https://snakemake.readthedocs.io/en /stable/executable.html
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(alternatively -¢) argument. The code snippet below contains an example of the
“_default_ " field.

8. {

9. " __default__"

10. {

11. "account" : "my account",
12. "time" : "01:00:00",

1Lg) "n" : 1,

14. "N" o1,

15, "c" i1,

16. "partition" : "core",

17. "out" : "log/{rule}-%j.out",
18. "name" : "unknown",

19. "mem" : "1000M"

20. }

21. }

Note that specific fields, such as “mem” (RAM usage in MB) and “time”

(maximum time a job can run) are overwritten by task-specific fields. For example,

u ”

mem” allocation depending on

the connectivity computation may require a higher
the size of the input data. The example command given below uses the
cluster.json contents for executing the workflow on a cluster using the SLURM
scheduler. The cluster.json contents are used to fill the wildcards given for the
cluster argument (i.e., {cluster.partition} hecomes core using the above default
example).
$ snakemake -j 999 -w 240 -u cluster.json --resources mem mb=20000 -c
“sbatch -p {cluster.partition} -n {cluster.n} -N {cluster.N} -t

{cluster.time} -c {cluster.c} --mem-per-cpu={cluster.mem} --
out={cluster.out} --job-name={cluster.name}”

The -¢ argument contains the command Snakemake uses to start jobs
through SLURM (i.e., the sbatch command in the above example). The -w 240
tells snakemake to wait at least 240 seconds for files to appear on the file system.
File system latency may delay the file from being visible to snakemake. If output
files are not generated, snakemake will assume the job was not executed properly
and halt further processing. The number of jobs -1 is set to 999, which has
snakemake issue all available jobs instantly. After all, SLURM now manages the
allocation of jobs instead of snakemake and holds jobs that cannot be executed

immediately in queue.

Aside from the mem mb resource, CBPtools also makes use of a custom 1o
resource. When several jobs that are executed in parallel attempt to access large
files, they may slow one another down. Since only the connectivity task is at risk
of having large files as input, each connectivity job is assigned one I/O token.

That is, when --resources i0=10 is get, only 10 such jobs may run at the same
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time. Whichever 1/O value works best depends crucially on the file system and

cluster setup.

After running one of these commands the processing will have started. The

coming sections detail the steps of the processing pipeline.

2.6 Processing

Here all processing tasks are outlined in a step-by-step fashion. The order in which
processing options are mentioned is the order in which they are processed by
CBPtools. For a detailed overview of all the in- and output for each task, consult

Appx. 5.

2.6.1 Masking

The masking task will generate and/or pre-process the seed and target masks.
If & region id ( ) is specified, the given seed mask will be
treated as an atlas. The region id can be a singular integer or a list of integers.
Each voxel within the atlas that has a value occurring in the list of region-ids is
used to construct a (composite) binary seed mask. If no target mask is given, the
default MNT 152 T1 whole-brain grey matter group template (2 mm isotropic) is
used as a target mask. Next, both seed and target masks are binarized (if

necessary). If no binarization threshold is set, a default threshold of 0 will be used.

Optionally, for each selected voxel within the binary seed mask, median
filtering reassesses its selection based on its neighbourhood. The spatial nearest
neighbours are taken for each voxel (resulting in a 3x3x3 matrix of the selected
voxel and its neighbours) and the median selection value (i.e., median of all values
in the matrix) is assigned as the new selection value for this voxel. An in-depth

explanation of median filtering is given in Sect. 2.7.1 [p. 60].

Next, seed voxels are optionally removed from the target mask (i.e., have
their values set to 0 indicating they are no longer part of the mask; see Fig. 6).
This procedure can also optionally remove a border around the seed region to
reduce the influence of smoothing. Application of this method ensures that ROI
to ROI (i.e., within-ROI) connectivity is ignored. Within-ROI connectivity (i.e.,
the connectivity between every pair of voxels within the seed mask) tends to be

high due to their relative proximity to one another and may therefore dominate
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the clustering. Whether doing so leads to better or more biologically relevant

parcellation results, however, is unclear.

Figure 6 Example of extracting seed voxels from a target mask. The ROI (red area) and
a 5 mm border surrounding the ROI (green area) are extracted from a whole-brain grey matter

mask

The target mask is now optionally subsampled (see Fig. 7). This option is
only available to the rsfMRI modality and is recommended when smoothed BOLD
time-series are used. It processes the target mask in such a manner that only ever
second voxel in each dimension is kept under the spatial-smoothness assumption
that neighbouring voxels provide a relatively similar signal. This can significantly
reduce computation time while preserving most of the information due to spatial

smoothness.

Figure 7 Subsampling example. a whole-brain grey matter mask without subsampling applied.

b whole-brain grey matter mask with subsampling applied.

When the dMRI modality is used, the seed and target masks can optionally
be up- and downsampled, respectively. This upsampling option spreads the seed
voxels to cover a larger area (reflecting a higher resolution for use with
probtrackx2), while maintaining the same number of voxels (which is necessary

so that ROI voxels can be mapped back upon the original ROI mask). Thus,
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voxels within the upsampled seed mask will be spread out equidistantly over a
larger area with no direct neighbouring voxels as a result of not increasing their
amount. The target-mask can be downsampled from a higher to a lower resolution,
resulting in fewer voxels covering the same space (i.e., larger voxels) which can

reduce computation time for probtrackx?2.

Lastly, the x, y, and z indices (i.e., coordinates in voxel space) are taken from
all seed voxels in C-contiguous order. This results in a 2-dimensional NumPy
array (stored as -npY ) of shape n by 3, where n is the number of voxels in the
seed mask. The indexing order is the same order of the seed voxels in the
connectivity matrices generated by CBPtools and is used for mapping the cluster

labels onto the seed mask.

2.6.2 rsfMRI Connectivity

The time-series are optionally smoothed wusing the nibabel package
(' nibabel.processing.smooth_image ) and a FWHM value in mm over which to smooth.
CBPtools uses the default smoothing mode, nearest = ag it is the recommended
choice for smoothing'. The seed and target masks are then applied separately to
the time-series, resulting in a seed-masked time-series and target-masked time-
series matrix (i.e., seed voxels by timepoints, and target voxels by timepoints,
respectively). Next, the variance for each masked voxel is calculated and voxels
with a variance below tolerance (defined as numpy.finfo(np.float32).eps  the
smallest representable positive number) are marked as low-variance voxels. Since
the calculation to obtain the connectivity matrix includes a division by the
standard deviation, low-variance voxels will return inf or NaN values. These
values will be set to 0. The low-variance error thresholds defined in the
configuration file are used to check whether there are too many low-variance
voxels in the seed- or target-masked time-series. If this is the case, the
connectivity computation is aborted, and an empty connectivity matrix is
returned. This act is logged, and at a later stage (the stage in which individual
results are grouped, see Fig. 5F) in the workflow processing will halt and provide

a more detailed error log.

Next, if a confounds file is provided the selected columns (all columns if none

are selected) will be linearly regressed out of the time-series signal for both the

! https://nipy.org /nibabel /reference /nibabel.processing. html#nibabel.processing.smooth image
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seed-masked and target-masked time-series. The code snippet below shows how
this is applied using the NumPy package.
1. import numpy as np

2. time_series = time_series - np.dot(confounds, np.linalg.lstsq(confounds, data,
rcond=-1)[0])

A fast-Fourier transform is then optionally applied on the seed- and target-

masked time-series separately, using the defined filtering band and repetition time.

The seed-based correlation is computed using the seed- and target-masked
time-series and a delta degrees of freedom (ddof) of 0, resulting in a connectivity
matrix. The code snippet below shows how the connectivity matrix is computed

using the NumPy package.

import numpy as np

1

28

3. # Standardization

4. X, y = map(lambda z: (z - np.mean(z, axis=@)) / np.std(z, axis=0, ddof=0), (x,

y)
5.
6. # Correlation
7. r = (y.T.dot(x) / x.shape[@]).T.astype(np.float32)

All resulting values that are inf or NaN are set to 0. All values at or above 1 are
set slightly lower than 1, and all values at or below -1 are set slightly higher than
-1. This accommodates the subsequent (optional) Fisher’s Z (Arctanh) transform,

which would otherwise return inf for values at 1 or -1.

If multi-session input data is used, then for each subject a connectivity matrix
per session will be computed. These matrices are averaged, resulting in one
connectivity matrix per subject. Lastly, an optional principal component analysis
(PCA) transformation can be applied to the connectivity matrix using the scikit-
learn package ( sklearn.decomposition.PCA ). First, the SciPy package is used for
detrending ( scipy.signal.detrend using the constant detrending type). PCA then
reduces the number of target features in the connectivity matrix with a user-
defined numerical value (an integer larger than 1 returns that many components,
whereas a float between 0 and 1 returns components explaining that percentage

of variance).
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2.6.3 dMRI Connectivity

Using probtrackx2, a tractography analysis is run producing sample
streamlines'. This produces a folder with various output files, of which the seed
points to target points connectivity matrix, fdt matrix2.dot = is used for further
processing. The file is produced as a sparse matrix in F-contiguous order which
CBPtools densifies using the SciPy package ( scipy.sparse.coo matrix and

the -todense() method). This matrix is now referred to as a connectivity matrix.

Tasks in the CBPtools workflow expect their inputs to be in C-contiguous
order. Reordering is required since the connectivity matrix as provided by
probtrackx2 is F-contiguous. This procedure 1is performed wusing the
cbptools.image.get f2c order method, which provides reordering indices using the
seed mask such that an F extraction order is turned into a C extraction order.
This new order is applied to the x-axis (seed voxels) of the connectivity matrix,
but not the y-axis (as the target value ordering is not used for the remaining

procedures in the CBPtools workflow).

As was done for rsfMRI connectivity, if multi-session input data is used, now
all connectivity matrices for a subject will be averaged. A cubic transform is now
optionally applied to the connectivity matrix using the NumPy package
(' numpy.power ) with a power of 1/3. Finally, an optional PCA transform can be
applied to the connectivity matrix using the same procedures as described for

rsftMRI connectivity.

2.6.4 Clustering

Clustering can be separated into three different tasks, one for each of the
three currently available clustering algorithms: k-means, spectral clustering, and
hierarchical clustering. Each algorithm has its own set of cluster options that are
defined in the configuration file and all use the connectivity matrix obtained from
the previous task as input. If the modality is set to ‘connectivity’, then instead
the user-defined connectivity matrices are used, and the workflow starts with this
task. The task will run n times on each connectivity matrix, where n is the length
of the range of cluster numbers requested (i.e., a configuration of n_clusters = [2,

3, 41 issues 3 clustering tasks per connectivity matrix).

! https: //fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT /UserGuide#ProbtrackXOutput
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The k-means, spectral clustering, and agglomerative clustering algorithms are
each implemented using the scikit-learn ( sklearn ) package. That is, cluster.kMeans
cluster.SpectralClustering, and cluster.AgglomerativeClustering’ respectively, along
with the cluster options as defined in the configuration file. For spectral clustering,
the algorithm may fail due to a numpy.linalg.LinAlgError (commonly due to a too
liberal stopping criterion value for eigendecomposition of the Laplacian matrix)
or because the requested number of clusters was not returned. If that is the case,
CBPtools will store an empty output file and create a warning in the log file.
Once all clustering tasks have finished executing, further processing will halt and
provide a more detailed error log. This allows the user to decide how to proceed
(e.g., change the cluster options, exclude problematic subjects, or reconsider other
(pre-)processing steps) on a case-by-case basis. The cluster labels obtained from

the selected clustering algorithm will be given as output for this task.

Once the clusterings (and therefore also connectivity matrices) are computed
for all subjects, the outputs are assessed. If at this point any of the subjects
produced problematic results (i.e., the connectivity or cluster labels file is empty
due to an error during processing), CBPtools will halt further processing and
instead produce a log file (at log/validate cluster labels.log within the project
directory) with information about the subject-ids and reason of the problematic
results. The processing can be resumed manually once all problems have been
addressed. If there are no problems at this point, the workflow will resume with

the next tasks.

2.6.5 Grouping

This task receives all subject-wise cluster labels per requested number of
clusters, k, and uses them to obtain a group consensus parcellation per k. The
cluster-ids used to assign voxels to a cluster are arbitrary (i.e., they can be
permuted), preventing a direct comparison between subject-wise cluster labels.
To permit comparison the cluster-ids must be reassigned (i.e., relabelled) such
that the most similar clusters between subjects get assigned the same cluster-id.
For an illustrated explanation of the relabelling strategy, see Sect. 2.7.3 [p. 62],

as the following paragraphs only describe the procedure.

First, a reference clustering is obtained by performing hierarchical clustering
using the SciPy package ( spatial.distance.pdist gpnd cluster.hierarchy ) with
Hamming distance. Hamming distance is insensitive to cluster-id permutations as

it measures the minimum number of substitutions required to change the set of
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cluster labels from one subject to that of another. The pairwise Hamming distance
y is calculated on the matrix z. Hierarchical clustering is then performed on x
using the linkage algorithm specified in the configuration file, resulting in a
linkage matrix, 2. The cophenetic correlation is now calculated between z and y.
The tree is cut to obtain a reference clustering with k clusters.

y = pdist(x, metric="hamming")

z = hierarchy.linkage(y, method=1linkage, metric="hamming')

coph = hierarchy.cophenet(z, y)
reference_labels = hierarchy.cut_tree(z, n_clusters=len(np.unique(x)))

A WNRE

Next, each subject-wise set of cluster-ids is relabelled by obtaining all
permutations of the cluster-ids and comparing each to the reference clustering
representative to all subjects. The permutation most similar to the reference is
used to reassign cluster-ids for that subject. Once all subject-wise labels have been

relabelled to best match the reference clustering, they become comparable.

The most frequent assignment for each voxel is then obtained by taking the
mode (using the SciPy stats.mode function) over the relabelled cluster-ids and
used as the group consensus parcellation. Alternatively, the reference clustering
may instead be selected as the group consensus parcellation if specified in the

configuration file.

Lastly, the group consensus parcellations are mapped upon the ROI for each
k and stored as a NIfTT image. The seed coordinates, created in the masking task
(see Sect. 2.6.1 [p. 52]), are used to obtain the x, y, and z coordinates of each
voxel in the cluster labels, as the ordering of the seed coordinates file coincides

with the ordering of the cluster labels file.

2.6.6 Validity

This task uses the connectivity matrix and cluster labels for each participant
to compute the requested validity metrics. The scikit-learn package
('sklearn.metrics ) is used to obtain the Silhouette index and Calinski-Harabasz
index, whereas the Davies-Bouldin index is implemented in CBPtools. The
requested validity metrics are each computed per subject and per k clustering
granularity using the subject’s connectivity matrix as a feature array, and the
subject’s predicted labels. Note that for the Silhouette index, the metric for
calculating distance between instances in the feature array is Euclidean. The
scores obtained from this task are merged into a tab-delimited file, used in the

report (see Sect. 2.6.8 [p. 59]), to create plots.
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2.6.7 Similarity

This task computes subject-to-subject, subject-to-group, and the (optional)
reference-to-group similarity scores using the similarity metric defined in the
configuration file. The scikit-learn package ( sklearn.metrics ) is used for all
available metrics, consisting of: the adjusted Rand index, adjusted mutual

information score, and the V measure score.

The subject-to-subject similarity matrix contains the pairwise similarity
scores between the cluster labels of each subject for each cluster granularity k.
Using the same method, the subject-to-group similarity matrix computes the
similarity between the cluster labels of each subject and the group consensus
parcellation for each cluster granularity k. If reference images are provided, the
labelled voxels are extracted from the images in C-contiguous order. The
similarity scores are then computed between each reference and each group

consensus parcellation (for each k).

2.6.8 Report

Plots are now generated for the various statistics obtained from the clustering,
grouping, validity, and similarity tasks. This part of the procedure consists of
multiple small tasks, split in such a way to enable faster processing by making

optimal use of the available resources.

All ROI NIfTT images obtained from the grouping task are plotted in various
views (i.e., right, left, superior, inferior, posterior, and anterior views) and color-
coded by cluster. The matplotlib package is used for generating 3D voxel plots
and various optimizations are performed to reduce the size of the figure files when
the output file type is set to vector graphics. Regardless, depending on the size of
the ROI these figure files can still be relatively large. The same figures can
optionally be generated for the clustering results of each subject, but this option

is not enabled by default.

The validity scores created in the validity task (see Sect. 2.6.6 [p. 58]) are
plotted as box plots, using the seaborn package which provides a high-level
interface for matplotlib. The colour palette used for the figures is colour blind safe
for the most common variant of colour blindness that leads to difficulties
distinguishing reds from greens. The similarity scores generated in the similarity
task (see Sect. 2.6.7 [p. 59]) are plotted as heat- and clustermaps, likewise using

the seaborn package. The cophenetic correlation and relabelling accuracy,
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computed during the grouping task (see Sect. 2.6.5 [p. 57]), are plotted as a line
plot with the score on the y-axis and the number of clusters on the x-axis, and a

box plot, respectively.

Once all plots have been generated the workflow procedure is complete. All
the interim and final output can be viewed in the project folder. Note that
CBPtools only deletes temporary interim data when the data is merged, ensuring

that there is no loss of information.

2.7 Methods Explanations

2.7.1 Median Filtering

Median filtering is an optional procedure which can be applied to ‘clean-up’
artifacts in a seed mask. Sometimes, a seed mask contains small holes, single-
voxel strands that protrude from the mask, or sharp borders. These artifacts
usually arise in hand-drawn ROIs. Median filtering may be a useful tool to get
rid of such artifacts. The reason why median filtering is particularly useful for
hand-drawn masks is that they usually lack continuity in the ‘depth’ direction
when drawing in 2D. When such artifacts are not expected, e.g., for atlas-derived
ROls, this is not a recommended option. For each selected voxel within the binary
mask ROI, median filtering reassesses its selection based on its neighbourhood.
To apply median filtering, the spatial nearest neighbours are taken for each voxel
(resulting in a 3x3x3 matrix of the selected voxel and its neighbours) and the
median selection value (i.e., median of all the values in the matrix) is assigned as
the new selection value for this voxel. Fig. 8 shows three examples of this
procedure simplified to a 2-dimensional space. The first example (Fig. 8a) shows
a selected voxel that has too few neighbours that are part of the mask. As a result,
the voxel is removed from the mask by having its value set to zero (the median).
The second example (Fig. 8b) instead shows a selected voxel that is not part of
the mask but has many neighbours that are part of it. The selected voxel is added
to the mask by having its value set to one. Lastly, the third example (Fig. 8c)
shows a selected voxel that is part of the mask and has many neighbours that are
likewise part of the mask. Its value remains unchanged, as the median is the same

as its original value.
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Figure 8 Median filtering example. The top row shows a selected voxel (centre) and its
nearest neighbour voxels (off-centre), where 1 means the voxel is part of the mask, and 0 means
it is not. The view is reduced to 2D for simplicity. The middle row shows all voxel values ordered
incrementally. The median value is highlighted in bold. The bottom row shows the same as the
top row after the selected voxel has its value changed with the median of itself and its neighbours.
a Median filtering that results in the voxel being set to 0 (i.e., not part of the mask). b Median
filtering that results in the voxel being set to 1 (i.e., part of the mask). ¢ Median filtering that

does not result in any changes (i.e., the voxel remains part of the mask)

2.7.2 Nuisance Signal Regression

Nuisance signals (i.e., confounds) can optionally be supplied as a tab-
separated file per subject (see Appx. 3). This file is expected to have a header on
the first row naming each column. The column names can be used to select
columns to be used as nuisance regressors (note that if no columns are specified,
then all columns are used). Commonly used columns may be white matter,
cerebrospinal fluid, grey matter, or global signal, as well as motion regressors to
correct for the effects of head motion in the scanner. If required, a linear trend
and constant should be added as columns to the files. The nuisance signal removal
is applied as a linear regression of the confound time-points on the time-series of

the corresponding subject and retaining the residuals as the new signal.
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2.7.3 Relabelling Strategy

Relabelling is applied to obtain a group-level parcellation by combining
subject-level parcellations. The subject-level cluster labels (per k) are obtained by
applying the k-means (or alternatively the agglomerative or spectral) clustering
algorithm. This results in a cluster labelling per subject, per k. Fig. 9a shows an
example set of labels for k = 5. The cluster-ids (represented by numbers and
colours) are arbitrary (i.e., they can be permuted), yet in this example all subjects
have identical clusterings (the dotted line separates the different clusters). To
interpret the parcellations over a population, the parcellations must be combined
into a single (group) parcellation per k by computing the most representative
cluster assignment for each ROI voxel across subjects. As the cluster-ids per
subject are arbitrary, they need to be reassigned such that the most similar
clusters between subjects get assigned the same cluster-id. To achieve this, all
permutations of the cluster-id (Fig. 9d) per subject are checked and the
permutation-derived labels to a reference clustering representative to all subjects
are compared. The permutation most similar to the reference is used to reassign
cluster-ids for that subject. The reference clustering (Fig. 9b) is obtained by
performing hierarchical clustering (Fig. 9c¢) with Hamming distance on all of the
subject labels (Nguyen and Caruana 2007). Hamming distance is insensitive to
cluster-id permutations as it measures the minimum number of substitutions
required to change the set of cluster labels from one subject to that of another.
Once all subject labels have been relabelled to best match the reference clustering,
they become comparable. The most frequent assignment for each voxel is then
obtained by taking the mode over the relabelled cluster-ids and used as the group
level parcellation (Fig. 9e). Note that in Fig. 9, all subjects clusterings are
identical for the assignment of cluster-ids. This is an ideal situation, but not a
realistic one. In real-world data, it is common to see differences in relabelled

results.
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Figure 9 Relabelling strategy to obtain group cluster labels. a Four example label sets
obtained from clustering where each colour/number represents a cluster-id that is assigned
randomly. Each of the subjects has an identical clustering, yet the cluster-ids differ. b Reference
cluster labels obtained through hierarchical clustering of the subject labels in a. ¢ Illustration of
hierarchical clustering performed on 5 voxels. d Cluster-ids are swapped for each possible
permutation of the cluster-ids array. Each permutation is then tested for similarity against the
reference clustering from b. e The cluster labels for each subject after the relabelling strategy has

been applied. The mode is obtained for each voxel, resulting in the group clustering
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2.8 Alternative Approaches

There are various ways to configure CBPtools either to process data
differently, or to receive different outputs. The primary focus of CBPtools is to
obtain group-level parcellation results stemming from various types of
connectivity markers. Alternatively, users may be interested in different outputs
such as those derived from multi-session data, clustering algorithms other than

the default (k-means clustering) or single-subject parcellations.

2.8.1 Cluster Methods

The k-means algorithm is the default clustering algorithm in CBPtools and
was used to obtain the results in this work. However, CBPtools also provides
agglomerative (hierarchical) and spectral clustering as options to obtain subject-
level parcellations. The method to obtain group-level parcellations remains the
same irrespective of subject-level parcellation algorithm. All three available
algorithms (k-means, agglomerative clustering and spectral) use the scikit-learn
package (Pedregosa et al 2011). To be more precise, the implementations are the
KMeans | AgglomerativeClustering , and SpectralClustering classes from the
sklearn.cluster module. The parameters that can be specified for each of these
algorithms can be adjusted in the configuration file. Note that not all scikit-learn
provided parameters can be used, as some are not relevant for CBP or do not
work in conjunction with the other steps in the workflow. Importantly, the
clustering results strongly depend on the parameters used. While CBPtools has a
set of default parameters, they might not be the best choice for a given ROI. For
example, it is possible that the spectral clustering algorithm might not be able to
properly compute a (semi-)positive definite similarity matrix when inappropriate
kernel parameters are used. In this case the spectral clustering cannot proceed.
For such cases, CBPtools will log the issues that occur during the clustering step,
perform clustering for all possible subjects, and then halt processing until the
issues are resolved. It should be noted that even if clustering succeeds, the
clustering results may not necessarily reflect biologically plausible results. For
instance, a 2-cluster solution may assign only one voxel to a cluster, and all other
voxels to the other cluster. If this happens, the group clustering (when mode is
being used as the method) may entirely remove the small cluster, resulting in a
1-cluster solution being posed as a k-cluster solution. It is therefore strongly
suggested to investigate the single-subject cluster labels and not only the group-

level clustering results. It is highly recommended to examine the log files to
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identify any problematic runs and parameters causing them. When using the
connectivity input modality with spectral clustering, it is possible to provide
adjacency instead of connectivity matrices. When choosing this option, the
adjacency matrices are given as input (in the configuration field data: connectivity )
and the spectral clustering affinity must be set to precomputed ( parameters:

clustering: cluster options: kernel ). This is not possible with k-means or

hierarchical clustering.

2.8.2 Multi-session Data

Multi-session data (i.e., a data set with multiple runs per subject) can be
processed using CBPtools by specifying sessions in the configuration file. Data for
each session will be processed separately until the connectivity step (Fig. 5c¢),
after which the connectivity matrices for each subject will be averaged across all
the sessions. When using multi-session data, the (optional) PCA transformation
will be performed after averaging the connectivity matrices, whereas the other
transformations (Fisher’s Z transform and cubic transform) will be applied before
averaging. The averaged connectivity matrices will then be used for the remainder

of the procedure.

Multi-session data can be defined in the configuration file as follows:

1. ¢ rsfmri

2o

3. : [sessl, sess2, sess3]

4. : /path/to/data_set/{participant_id}/{session}/time_series.nii.gz
5. :

6. : [“constant’, ‘wm.linear’, €‘csf.linear’, ‘motion-*’]

7. :\t

8. : /path/to/data_set/{participant_id}/{session}/confounds.tsv
9. :

10. : /path/to/seed _mask.nii.gz

11. : /path/to/target_mask.nii.gz

120 : standard

13.

Note how the {session} wildcard is now used to reference the data set files.
Assuming two subjects with participant IDs ‘sub-001’" and ‘sub-002’, and the

sessions defined as in the code-block above, the time series files will become:

e /path/to/data__set/sub-001/sess1/time__series.nii.gz
o /path/to/data_set/sub-001/sess2/time__series.nii.gz
e /path/to/data_set/sub-001/sess3/time_ series.nii.gz
o /path/to/data_set/sub-002/sess1/time__series.nii.gz
o /path/to/data_set/sub-002/sess2/time__series.nii.gz
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e /path/to/data__set/sub-002/sess3/time__series.nii.gz

All wildcards can be used multiple times and do not have to indicate a folder
(i.e., they can also be part of a file name). The data set structure and naming

must be consistent, otherwise subjects will be marked as missing data.

2.8.3 Single-subject Parcellation

CBPtools can generate subject-specific reports (i.e., metrics and plots) in
addition to the group-level clustering reports if specified in the configuration file.
This is done by setting the field parameters: report: individual plots to true. This
option is turned off by default as it requires more computation time. CBPtools
can also be used to obtain parcellations in the subject’s native space by setting
the data: masks: space field to ’native’. In this case all the data, i.e., the input
masks and the fMRI and dMRI data, should be in the native space. Furthermore,
the target mask is no longer optional, as the default target mask is in a common
reference space rather than native space. Note that group-level parcellations
cannot be computed in this scenario. This is because CBPtools does not perform
any transformations to bring native data into a common reference space. As a
result, only the subject-level parcellations can be computed. When subject-specific
input masks are provided, CBPtools will generate all figures for each individual
subject, rather than generate output at the group level. Steps F and G in Fig. 5
are skipped, and step H will provide different output. Note that in any case, seed

and target masks must always be in the same space.

2.8.4 Automatically deriving the seed mask from an atlas

To accommodate the use of atlases, an atlas can be provided as a seed mask
(i.e., in the data: masks: seed field) instead of a binary seed mask. When doing so,
the atlas must be a NIfTT image using integers as region-ids, and the region(s) to
be used as a seed mask must be specified as one or more region-ids (integers) in
the configuration file. A composite binary mask of the specified region(s) will be
generated. Since CBPtools does not perform any image warping, the atlas must
be in the same space as the input data (i.e., the time-series for the rsfMRI
modality, and the bedpostx output for the dAMRI modality).
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2.8.5 Using reference images

To allow direct comparisons between the CBPtools group-level cluster
solutions and a priori parcellations (e.g., the cytoarchitectonically defined
preSMA-SMA subdivision as used in this work) one or more reference images can
be provided. These images must be in the same space as the seed mask, covering
the same voxels, and have at least two clusters. A similarity score (either Cramer’s
V measure, ARI, or adjusted mutual information score) will be computed between
each reference image and each group clustering solution. The output will be
provided as a tab-separated file, as well as a heatmap. An example of the latter
is shown in Fig. 10.

V Measure Score

group clusters
k=2 k=3 k=4

referencel.niigz  0.18 0.12

reference2.nii.gz EUNGEN 017 SR

referenced.niigz UAENN 0.18  0.18

Source: group/reference_similarity tsy
Figure 10 Reference similarity heatmap example. Three different group clustering results

(k = [2, 3, 4]) are compared to three different reference NIfTT images using dummy data.

2.8.6 Running multiple CBPtools projects in parallel

Clustering of input data from the rsfMRI and dMRI modalities are run
separately (i.e., no multi-modal solution is provided), and the various
configuration options can be different between the modalities. CBPtools cannot
create a project that processes both rstMRI and dMRI data within a single
workflow. However, it is possible to create multiple projects (using different
configuration files) to subsequently run them in parallel by executing snakemake
once per project. On a system that is not managed by a scheduler (e.g., SLURM,
HTCondor, etc.) it is recommended to specify the number of jobs and amount of
memory each snakemake instance can use. If a scheduler is being used, this is not
necessary. For example, on a system with 8 threads and 30 GB of memory the
following approach can be used to initialize two CBPtools projects (with each

having access to half of the available resources):

$ cbptools create -c config_r_presma -sma_rsfmri. yaml -w r_presma -sma_rsfmri
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$ cbptools create -c config_r_amygdala_dmri.yaml -w r_amygdala_dmri

Two terminal windows can then be opened, to run the following commands (one

in each terminal):

$ cd r_presma-sma_rsfmri
$ snakemake -j 4 --resources mem_mb =15000

and

cd r_amygdala_dmri
snakemake -j 4 --resources mem_mb =15000

+ A

2.9 Benchmarks

To assess the performance of CBPtools on a cluster, benchmarks were
obtained using snakemake’s (Koster and Rahmann 2012) benchmarking utilities.
Snakemake uses the psutil package to obtain the values for various benchmarking
metrics. rsfMRI and dMRI workflows were benchmarked for the preSMA-SMA
ROI parcellation as described in Ch. 3 [p. 78]. The benchmarks were performed
on a system with 30 total available threads and 100GB total available RAM. The
data set was stored on a shared remote storage server, hence competing for file
read and write speed (I/O) may have increased the duration of each individual
task. The entire procedure for the rstMRI data took 1 day, 14 hours, 56 minutes,
and 1 second. For the dMRI data, it took 3 days, 23 hours, 42 minutes, and 23
seconds. Tables 1 and 2 show the total task duration for the rsfMRI and dMRI
data, respectively. Tables 15, 16, 17, 18, and 19 in Appx. 6 show the maximum
resident set size (RSS), maximum virtual memory size (VMS), maximum unique
set size (USS), maximum proportional set size (PSS), and maximum CPU load
in seconds for regional CBP of the preSMA-SMA ROI performed on rsfMRI data.
Tables 20, 21, 22, 23, and 24 in Appx. 6 show the same for the dMRI data. The
RSS, VMS, PSS, and USS refer to the memory usage during the execution of a

task, with each metric providing a different measurement.

Due to overlap between metrics it is not correct to sum them, instead they
should be assessed individually. USS is likely the most representative metric for
determining how much memory is actually being used by a process (Rodola 2019).
Note that the reported benchmarks are per run of a task, where each task ran
several times equal to the n jobs column. For example, the connectivity task ran
300 times (once per subject), whereas the k-means clustering task ran 1200 times

(4 times per connectivity matrix, once for each requested value of k). Other
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metrics, such as I/O in, and I/O out were reported by Snakemake but not
included here for the sake of brevity. All reported values are in megabytes (MB),
except duration which is in the hours:minutes:seconds format. Since benchmarking
is recorded in seconds, tasks that took less than half a second are rounded to 0
seconds. Accurately testing runtime and CPU usage is difficult as it depends on
many factors that can differ strongly between systems and configuration settings.
For example, the size of the input data and ROI, as well as using local or shared
computational resources may influence any of the reported metrics. With data
sets as large as the HCP data, users will often be limited to using shared resources
when processing this data with CBPtools. Total compute time for the entire
procedure may therefore vary considerably even between runs on the same system.
Thus, all reported benchmarks should only be interpreted as a loose guideline of

what can be expected from this software.

Table 1. Duration per task for the rstMRI preSMA-SMA parcellation

task mean std min max n jobs
process masks 00:00:00 - - - 1
connectivity 00:07:51 00:02:47 00:02:55 00:13:25 300
kmeans clustering 00:03:07 00:00:52 00:01:25 00:05:14 1200
internal validity 00:00:06 00:00:00 00:00:05 00:00:07 300
group-level clustering 00:00:01 00:00:01 00:00:00 00:00:04 4
group similarity 00:00:07 - - - 1
plot individual 00:00:02 00:00:00 00:00:01 00:00:02 4
similarity

plot group similarity 00:00:00 - - - 1
plot labelled ROI 00:00:04 00:00:00 00:00:03 00:00:04 24

plot internal validity 00:00:00 00:00:00 00:00:00 00:00:00 3

Table 2. Duration per task for the dMRI preSMA-SMA parcellation

task mean std min max n jobs
process masks 00:00:00 - - - 1
connectivity 00:01:24 00:00:19 00:00:34 00:02:41 300
kmeans clustering 00:07:50 00:02:10 00:03:49 00:12:25 1200
internal validity 00:00:11 00:00:00 00:00:10 00:00:11 300
group-level clustering 00:00:01 00:00:01 00:00:00 00:00:04 4
group similarity 00:00:08 - - -

plot individual 00:00:02 00:00:00 00:00:01 00:00:02 4
similarity

plot group similarity 00:00:00 - - - 1
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plot labelled ROI 00:00:04 00:00:00 00:00:03 00:00:04 24
plot internal validity 00:00:00 00:00:00 00:00:00 00:00:00 3

2.10 Extending CBPtools

It is possible to extend CBPtools with new processing tasks or to modify
existing tasks. The codebase is publicly available, hence the option to modify or

supplement the software can be done with relative ease.

2.10.1 Modifying the Repository

The CBPtools repository on the INM7 GitHub page' is always a reflection of
the latest CBPtools version made available through the Python Package Index
(i.e., the latest version installable through pip). Future changes will be committed
to a developer branch that will only be merged with the master branch when a
new release is available. To contribute or create a personal version of the software
this repository can be forked. A fork is a copy of a repository, which can be
modified or extended without influencing the original. The forked repository can
be cloned to obtain a local copy, which can also be installed and used as is (e.g.,
using Pip install -e . in jts root directory). It is furthermore recommended to
create a virtual environment for this install, separating it from any existing
CBPtools installations. Fig. 11 outlines how to both fork and clone the CBPtools
repository. Note that forking (but not cloning) requires a GitHub account, and

cloning requires a local install of the git software.

The clone (i.e., local copy) can be modified and tested locally without
influencing any existing CBPtools installations. Any changes made can be pushed
(i.e., uploaded) to the forked repository. If the clone was made from the fork, then
the remote (i.e., the location of the fork) will already be defined, hence a regular
push (using git push origin master ) will upload all changes and make them
available on the forked repository. If public, others can then see and contribute

to the fork as well.

Another function of forks is to propose changes to the original repository.

Any changes made to a fork can be submitted as a pull request (PR), which, if

! https://github.com/inm7/cbptools
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accepted, will be merged with the original repository. This effectively extends
CBPtools. Aside from bug fixes, any future additions to CBPtools will be made
in the form of PRs to ensure a proper history is available and any contributor

can comment on future changes or propose changes to the PR.

%7 inm7/ cbptools ©Watch ~ 0 {rStar 15 % Fork 2

forked from nhjjreuter/cbptools

<> Code Issues Pull requests Actions Projects Wiki Security Insights

¥ master = Go to file Add file ~ About X

CBPtools: A Python package
This branch is even with nhjreutermaster. GJ  Clone ® for regional connectivity-

HTTPS  SSH  GitHub CLI based parcellation

git@github.com:inm7/cbptools.git E|
Reuter, Miels Update version .. [0 Readme
Use a password-protected S5H key.
& View license
cbptools Update version
) Open with GitHub Desktop
docs update main titl
Releases
™ .gitignore cleanup A Download ZIP
No releases published
[ .readthedocsymil Update .readthedocs.yml 14 months ago Create a new release

Figure 11 Forking and cloning the CBPtools repository. This website can be reached at

https://github.com /inm7/cbptools. After logging in to GitHub, the CBPtools repository can be
forked by pressing the “Fork” button in the top right corner. It can be cloned (ideally from the
fork) by pressing the green “code” button, and using the SSH address by issuing the 9it clone

command from a local terminal using the listed SSH address

2.10.2 Extending a Task

Procedures in CBPtools are contained in the tasks module (see Sect. 2.1.3 [p.
42]). Any Python function that is to be executed as part of the pipeline and
generates output files from input files can be written as a task. The various tasks
employed by CBPtools are outlined in Sect. 2.6 [p. 52].

The location of the tfasks module in the CBPtools repository is
cbptools/cbptools/tasks/ . Fach Python file in this directory represents a group of
functions belonging to a particular category (i.e., clustering.py contains the
functions for applying a clustering algorithm, cluster validation, group-level
clustering, and the merging of cluster labels). The contents of these functions can
be changed to modify the processing of that particular task. For example, if a

user wishes to extend the k-means clustering procedure by first applying another

71


https://github.com/inm7/cbptools

Chapter 2: Implementation

function to the cluster labels, then the kmeans clustering function in clustering.py

can be edited, without the need to modify anything else.

The workflow module (see Sect. 2.1.2 [p. 41]) is responsible for appending
tasks to the workflow. It is located at cbptools/cbptools/workflow.py . Fach class
uses the name property to link the relevant function in the tasks module. For
example, the class RuleKMeansClustering has its name property set to
“kmeans_clustering”, which refers to the identically named function in
cbptools/cbptools/tasks/clustering.py exposed by
cbptools/cbptools/tasks/__init__.py ., The Snakemake workflow automatically
adopts this name, hence there is consistency in the naming convention making it
easier to modify relevant tasks. If the CBPtools pipeline is executed in verbose
mode, one can see which function is being used by the workflow, including its

input and output files.

2.10.3 Modifying the Workflow

Modifying the workflow is slightly more involved as opposed to modifying a
task. The first step in this procedure is to create a new task in the tasks module.
This is done by either adding a new function to an existing script (i.e., a
clustering-related function to clustering.py ) or creating a new file containing a
new  function. The  function then needs to be added to
cbptools/cbptools/tasks/__init__.py to expose it to the other modules in CBPtools.
This is done by importing the function, and then adding its name to the _all__

variable.

Next, the task must be attached to the workflow. This is done by adding a
new “rule” class to cbptools/workflow.py . The class must be prefixed by ‘Rule’. For
example, if the user wants to extend CBPtools by adding the Ward clustering
algorithm, then an appropriate class name would be RuleWardClustering . The class
must inherit from the BaseRule guperclass. This ensures that, even if not explicitly
defined, the class possesses all methods required to be imported into the workflow.
The name property is then set to the name of the task function, for example
ward clustering . The class consists of various predefined methods, each with a

particular purpose for workflow integration.

The 1is active method assists the workflow generation code in determining
whether the task should be added to the workflow or not. For example, if the

task should only be executed when a particular configuration parameter is used,
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it would be evaluated in this method. The method always returns a boolean;

False for when the task is to be ignored, True when the task should be included.

The input and output methods define which input is expected and where to
find it, and which output is to be expected and where it should be stored,
respectively. The params method is used to read configuration parameters. All
three methods return a dictionary object that is passed to the task, containing
the input file paths, output file paths, and parameter values, respectively. This is
how configuration parameters as well as file paths used by the workflow manager

are made accessible to the task function.

The log and benchmark methods are optional and define where to store log
files or benchmark results, respectively. The cluster json method assists in
dynamically generating a cluster file that can be used when initiating the
workflow (see Sect. 2.5.4 [p. 50]). The threads and resources methods define how
many threads and resources are going to be used by the task. For threads, an
integer declaring how many threads will be used is passed, as snakemake allows
for parallelization within a task. However, as of this writing no CBPtools task
makes use of this. In resources the memory usage can be defined in megabytes as
‘mem_ mb’, and the I/O tokens can be defined as ‘0’ (see Sect. 2.5.4 [p. 50]).
Lastly, the run method returns the location within CBPtools of the newly created
task with all necessary arguments (i.e., tasks.ward clustering(input, output,
params, .) ). This method uses the name property to derive the task’s name.
Alternatively, it is possible to use the shell method to use a shell script instead
of Python code.

Once this is all set up, the new task will automatically be added to the
workflow, provided its activation conditions are met. If the task generates output
that is not used by any subsequent tasks, then the output files should be added
to the RuleAll class. Without this, the directed acyclic graph generated by
Snakemake will exclude the newly created function, as its output is not deemed

necessary.

2.10.4 Extending the Configuration

When more customizability is required on the side of the end user, more
parameters can be added to the configuration file. This is particularly useful if a
new task gets added that requires new parameters to function. The Validator

class evaluates the configuration file using these new parameters (see Sect. 2.1.1

[p- 39]).
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The configuration file is divided into three sections: input modality (under
the “modality” key), input data (under the “data” key), and processing
parameters (under the “parameters” key). These keys are also used in the
configuration file itself, for which an example can be generated. In the below code
snippet, the parameter is named “binarization”. All keys nested within the

parameter are predefined rules that perform a particular evaluation.

1. :

2o : float

3. : 0.0

4. : 0.0

5. ) : [rsfMRI, dmri]]

6. : false

7. : "Threshold above which voxels in the ROI mask image are ..."
8. : [has_sessions]

The rules required, type, contains, allowed, max, min, maxlength, and
minlength are outlined in Appx. 3. The default rule contains the default value if
no value is entered. The parameter is ignored (i.e., not evaluated) if its
dependency is not met. In the above code snippet, the modality must be either
‘rstMRI’ or ‘dMRI’ for this parameter to be evaluated. Lastly, the desc key
contains a description of this parameter which will be added to the CBPtools

documentation automatically.

It is possible to make a custom rule for evaluation, which can be attached to
the parameter as a value of the custom key, as depicted in the code snippet above.
Such rules must be prefixed by _rule custom  The code snippet above, showing
“has_sessions” as a custom rule, triggers a custom function defined in
cbptools/validation.py called _rule custom has sessions = This may be necessary if
none of the other rules sufficiently evaluates the configuration parameter. Custom
functions for rule evaluation should always return a boolean ( True for when the
rule is passed successfully, and False if the rule has failed to evaluate). The
addition of a new custom evaluation rule is automatically detected by CBPtools,
so no further references have to be added anywhere. Custom rules have access to
the current class object (through the self argument) and the configuration values

as entered by the user (through the this argument).

Once a custom configuration option is made, it will automatically be
evaluated when CBPtools is wused next. Furthermore, rebuilding the

documentation automatically adds its description to the relevant documentation

page.
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Chapter 3. Example Data

EXAMPLE DATA

To illustrate both the usage of CBPtools and the output it provides,
the resting-state and DWI modalities of the HCP data (Van Essen et
al 2013) were used to parcellate three regions that have been
frequently analysed using the rCBP procedure: the right (R) Insula,
R Amygdala, and an ROI comprising R presupplementary motor area

(preSMA) and R supplementary motor area (SMA).

3.1 Data and pre-processing

The Right (R) preSMA and SMA, R insula, and R amygdala are prominently
featured regions in CBP analyses and were therefore selected as ROIs to evaluate
the CBPtools software (see Fig. 12). The R preSMA-SMA region (at 972 voxels),
known collectively as the medial frontal cortex (MFC), was extracted using the
Jitlich Cytoarchitectonic Atlas (Eickhoff et al 2005; Ruan et al 2018). Originally
obtained in MNI Colin space, the mask NIfTT images were warped to MNI152
space using FSL’s FNIRT software for non-linear registration. Both NIfTT images
were then merged into one mask for the purpose of parcellation, whereas the
separated images were used for cluster validation. The R insula (546 voxels) and
R amygdala (280 voxels) regions were both extracted using the FSL distributed
Harvard-Oxford Atlas. No further processing on these masks was necessary, as

the Harvard-Oxford Atlas is already in the MNI152 common reference space.
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a _R preSMA-SMA R Insula R Amygdala b

"l {:‘J . % | .i

U k=4 x=22  x=40

y=0 y=-6 y=15 c

=60 z=-16 z=6
Figure 12 Visualization of the R preSMA-SMA, R insula, and R amygdala. a The
three columns highlight the R preSMA-SMA (blue, left), R amygdala (green, middle), and R
insula (red, right) in sagittal, coronal, and axial (top to bottom) sections. The figures were
generated using Nilearn’s plotting tools (Abraham et al 2014). b All ROIs shown from a right-
sided view with posterior (P) to the left, and anterior (A) to the right. ¢ An anterior view of the
three ROIs, with right (R) and left (L) flipped to radiological display convention. The 3D
representations in b and ¢ were generated using Mango (multi-image analysis GUI;

http://ric.uthscsa.edu/mango/)

Prior studies in our institute have made use of the FIX-denoised rsfMRI data
and minimally processed (Glasser et al 2013) data of the young adult 1200 data
set of the HCP (Van Essen et al 2013) which contains a total of 1206 subjects in
457 unique families, some of which are genetically confirmed monozygotic (149
pairs) or dizygotic (94 pairs) twins. This sample was used due to its large size,
high temporal and spatial resolution, and high quality (for an open access data
set), as well as having young and healthy subjects. Of the entire data set, only
the rsfMRI and dMRI data of 300 healthy unrelated subjects (mean age 28.57,
150 females, no significant age (t = .71, p = .48) and educational (t = -.31, p
= .75) difference between genders) were used. As the HCP young adult 1200 data
set includes monozygotic and dizygotic twins it was important not to include
related individuals in our sample, under the assumption that brain structure in
twins is more similar than between unrelated singletons. Note that twins face

additional challenges during early development (i.e., more adverse pre- and
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perinatal events than singletons) causing further divergence from singleton brain

structure and thus potentially hampering comparability (Ordaz et al 2010).

Pre-processing of the rsfMRI and dMRI data followed the minimal processing
pipelines of the HCP [cf. Glasser et al. (2013)] consisting of structural, functional,
and diffusion pipelines. These pipelines had been applied prior to receiving the
data through official HCP channels. The structural pipeline obtains an
undistorted native structural volume space per subject, aligns T1lw and T2w
images, performs bias field correction, and finally registers the native structural
volumes to MNI space. The functional pipelines consist out of a volumetric and
surface-based pipeline, of which only the volumetric pipeline is relevant here as
no surface data was used. It removes spatial distortions, performs volume
realignment to correct for motion artifacts, registers fMRI data to the structural
data, reduces the bias field, normalizes the image to the global mean, and masks
the data with a brain mask to remove non-brain tissue. Lastly, using the original
diffusion timeseries (from two different phase encoding directions), the diffusion
pipeline starts with b0 intensity normalization, susceptibility induced distortion
correction, eddy current and subject motion correction, gradient nonlinearity
correction, registration of the b0 image to the T1lw image, and resampling to

native structural space.

After acquisition of the data from official HCP channels, the rsfMRI
minimally processed data was FIX-denoised. The dMRI minimally processed data
was further pre-processed with FSL’s Bayesian estimation of diffusion parameters
obtained using sampling techniques (bedpostx) which utilizes Markov chain
Monte Carlo sampling to create distributions of diffusion parameters for each
voxel, and this is then used to model crossing fibres in the brain. Importantly, it
generates all the files necessary for performing probabilistic tractography
(probtrackx2), a necessary step for obtaining dMRI connectivity markers. Further

(pre-)processing of the data was done using CBPtools.

3.2 Analysis Procedure

CBPtools was used for further processing and analysis, with workflow
execution proceeding separately for each ROI and modality, as depicted in Fig.
5. For each execution the average MNI152 T1 brain (2mm isotropic) from FSL
(Jenkinson et al 2012) was binarized and used as a whole-brain grey matter target
mask. For rsfMRI only, the target mask was subsampled (see Sect. 2.6.1 [p. 52])

to improve computational efficiency.
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Including the pre-processing of the ROI- and target-masks, all the following
steps were done by CBPtools or one of its dependencies, using the configuration
parameters outlined below (these are the CBPtools default configuration
parameters). The rsfMRI BOLD time-series were Smm full width at half
maximum (FWHM) smoothed, global white matter (WM), global cerebrospinal
fluid (CSF), 24 motion parameter signal corrected (including a bias term), and
0.01-0.08 Hz band-pass-filtered (see the green boxes in Fig. 5¢). Global WM and
global CSF nuisance signal regression in addition to FIX-denoising were used as
they give the highest reliability for rstMRI CBP (Plachti et al 2019). The linear
correlations between ROI- and target-voxel time-series were then computed to
obtain an ROI-to-target connectivity matrix for each subject and Fisher’s Z
transformed. To derive dMRI connectivity, probabilistic tractography was
performed with the following parameters: distance threshold = 5, loop check =
True, curvature threshold = 0.2, step length = 0.5, number of samples = 5000,
steps per sample = 2000, correct path distribution for pathway length = True.
This yielded a high-resolution ROI to low-resolution target (whole-brain)

connectivity matrix per subject which was cubic transformed.

Each subject’s connectivity matrix was used as input for k-means clustering
(with k from 2 to 5, the k-means++ initialization method, 256 initializations [as
suggested by Nanetti et al. (2009)], and a maximum of 10,000 iterations; Fig.
5d). The range of k was chosen after consulting relevant literature regarding the
three ROIs. To maintain the same settings for each ROI and make replication of
the example procedure computationally less intensive, it was chosen to keep the
range of k consistent between ROIs. To obtain a group-level clustering,
hierarchical clustering with complete linkage and Hamming distance was applied
(Fig. 5f) on individual-level clusterings to obtain a combined reference clustering
per k (Nguyen and Caruana 2007). The reference clustering was subsequently
used to relabel the individual clusterings. The resulting labels were used to
calculate the mode for each voxel, serving as the group-level clustering result for
each value of k. Cluster validation was performed on the individual clusterings
using the Silhouette index, the Calinski-Harabasz index, and the Davies-Bouldin
index (Fig. 5e). The adjusted Rand index (ARI) was computed as a similarity

measure between individual- and group-clusterings (Fig. 5g).
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3.2.1 Parcellation Results

For each ROI a different aspect of the CBPtools workflow was focused on.
For the preSMA-SMA ROI emphasis was placed on the reproducibility of
histological parcellations, for the insula attention was directed towards the
subdivisions of various k cluster solutions for the group parcellations, and lastly,
for the amygdala the cluster validity metrics provided as output by the workflow

were evaluated.

3.2.2 Amygdala long-range dMRI connectivity

Due to the results obtained from the R amygdala parcellation on dMRI data
at high clustering granularity, as well as the problems inherent to probabilistic
tractography and the poor signal to noise ratio of MRI in subcortical regions, it
was decided to further investigate the source of this clustering. To determine
whether this pattern was driven solely by local connectivity rather than
differentiation based on long-range connectivity profiles of the ROI voxels, the
ROI and a border around it were excluded from the whole-brain grey matter
target mask in a follow-up analysis. The exclusion of the ROI along with borders
of 5, 20, and 40mm around it were analysed separately. Next, the ARI was
computed between these clustering results and the original R amygdala clustering
results to assess their similarity. Lastly, the target voxel contribution to the k& =
2 clustering of the R amygdala was evaluated. The dMRI connectivity matrices,
computed with probtrackx2 (see Sect. 2.6.3 [p. 56]) were averaged for all subjects,
resulting in an ROI voxel by target voxel matrix. The ROI voxels were separated
by cluster, and the connectivity values of each target voxel to all ROI voxels
within a cluster were then averaged. This provided an average connectivity value
of each target voxel to each of the two clusters. The Euclidean distance between
the connectivity values of both clusters for each target voxel was then calculated.
The higher this distance, the larger of a contribution this target voxel provided
to separating both clusters. This array of Euclidean distance values per target
voxel was then z-scored and values below 1.96 were discarded. The remaining
target voxels were considered the most important features as per their

contribution to the cluster separation for £ = 2.
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3.3 SMA Parcellation

The MFC is commonly subdivided into the SMA and preSMA, separated by
the wvertical commissure anterior. Located on the midline surface of the
hemisphere, activity in the SMA corresponds to the control of movement as its
neurons project directly to the spinal cord. The most anterior part of the SMA is
termed the pre-SMA, and both the SMA (posterior) and pre-SMA (anterior)
subdivisions are marked by a sharp cytoarchitectonic border making them easily
distinguishable with CBP.

3.3.1 Results

The group-clusterings for the 2-cluster solution approximated the R preSMA-
SMA cytoarchitectonic differentiation with an ARI of .71 for rsfMRI and .76 for
dMRI results (where 0 indicates no similarity at all, and 1 indicates perfect
similarity). That is, only 76 (7.82%) and 63 (6.48%) out of all voxels were
mismatched for rsfMRI and dMRI, respectively. Fig. 13a provides a visual
representation of the ROI with the 2-cluster labels mapped onto it for the
cytoarchitectonically defined region, and the two rCBP defined subdivisions using
rsfMRI and dMRI data. The Silhouette index (Fig. 13b), Davies-Bouldin index,
and Calinski-Harabasz index all indicate the 2-cluster solution as the best fit to
the rsfMRI input data (note that the Davies-Bouldin index indicates a better fit
through a lower value). The Silhouette and Calinski-Harabasz indices obtained
from the dMRI clusterings both suggested the 2-cluster solution, with only the
Davies-Bouldin index suggesting a slightly better fit for the 3-cluster solution.
Results are consistent with previous studies regarding functional and structural
parcellation of the preSMA-SMA regions (Johansen-Berg et al 2004; Klein et al
2007; Kim et al 2010; Zhang et al 2015).
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Figure 13 R preSMA—-SMA results from the rCBP procedure. a The two-cluster solutions
of the combined R preSMA and SMA ROI for the cytoarchitectonically defined (Ruan et al 2018)
subdivision from the Jilich histological atlas (Eickhoff et al 2005), and the rsfMRI and dMRI
connectivity-based parcels from left to right. The 3D representations were generated using
matplotlib’s 3D voxel/volumetric plotting and are in the same view as Fig. 12b. b ARI scores
between the individual subject clustering results and the group-level clustering result for both
rsfMRI and dMRI for k=[2,3,4,5]. ¢ Silhouette index for all cluster solutions (k=[2,3,4,5]) where
a higher Silhouette index indicates a better fit. Here, the two-cluster solution seems to best fit the

input data for both rsfMRI and dMRI

By keeping the configuration of CBPtools consistent between ROls,
additional results (i.e., validity metrics and further cluster solutions) were
automatically generated from the existing data. These results can be found in Fig.
14, which contains all the results provided as output by CBPtools for the
preSMA-SMA ROI. While the results in Fig. 14a have been shown in full for the
R insula and R amygdala ROIs, Fig. 14b contains the relabel accuracy as
described in Sect. 2.7.3 [p. 62], showing that in particular for the dMRI 2-cluster
solution the percentage of overlap is high. Generally, the adjusted rand index
(ARI) is more credible than the percentage of overlap as it corrects for chance
grouping of voxels within a cluster solution. The cophenetic correlation is
displayed in Fig. 14c. It is a measure on how well the pairwise distances between
the individual cluster labels (i.e., the cluster labels generated from each subject’s
connectivity matrix) are preserved in the group-level clustering. In this case it is
the mode of the relabelled individual clustering results for each value of k, as
described in Sect. 3.2 [p. 80]. The result is particularly high for the chosen 2-
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cluster solution for both dMRI and rsfMRI. Fig. 14d shows the remaining 3, 4,

and H-cluster solutions, although both internal and external validity suggests a 2-

cluster solution.
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Figure 14 R preSMA-SMA validity metrics and parcels. a Internal validity scores (the

Silhouette index, the Davies-Bouldin index, and the Calinski-Harabasz index) for all tested

solutions (k = [2, 3, 4, 5]). b Accuracy of the relabelling for each individual clustering to the

group-clustering with the cluster number k on the x-axis, comparing rsfMRI (blue) to dMRI

(orange). ¢ Cophenetic correlation scores of the reference clusterings for k = [2, 3, 4, 5] based on

the rsfMRI (blue) and dMRI (orange) modalities. d Parcels for the k = [2, 3, 4, 5] cluster solutions



Chapter 3. Example Data

for both dMRI (top row) and rsfMRI (bottom row). The view is from the right side of the ROI

with the posterior on the left and anterior on the right (the same view as applied in Fig. 12b)

3.8.2 Discussion

Separating the SMA and preSMA is a popular approach to validate rCBP
methods (Johansen-Berg et al 2004; Klein et al 2007; Kim et al 2010; Zhang et al
2015) as it provides a gold standard and furthermore high-lights the ability of the
rCBP procedure to reproduce histological parcellations. These two neighbouring
regions exhibit an abrupt change in connectivity profile where their borders are
expected to be, attributed to predominant connections to the motor regions for
the SMA and prefrontal connections for the preSMA (Johansen-Berg et al 2004).
As voxels are assigned to clusters based on similarity in their connectivity profiles,
separating the preSMA-SMA ROI through automated parcellation approaches
should therefore be straightforward. By using the cytoarchitectonically defined
preSMA and SMA regions as external validation, it was possible to assess
histological reproducibility of the preSMA-SMA ROI using CBPtools. This was
achieved with a very high similarity (ARI > .7) for both the dMRI and the rsfMRI

connectivity driven parcellation to the cytoarchitectonic definition of the ROI.

3.4 Insula Parcellation

Located deep within the lateral sulcus of the Sylvian fissure, which separates
the parietal and frontal lobes from the temporal lobe, the insular cortex is a region
first described by J. C. Reil (1808), therefore also known by the moniker ‘the
island of Reil’. It is suggested to be involved in processing sensory, motor,
gustatory, olfactory, auditory, and pain information, body representation, as well
as modulating attention and emotion (Bamiou et al 2003; Ackermann and Riecker
2004; Brooks et al 2005; Menon and Uddin 2010; Rudenga et al 2010; Gasquoine
2014; Dambacher et al 2015; Avery et al 2015; Preston and Ehrsson 2016; Mazzola
et al 2017). As its associations imply, it is one of the most frequently activated
regions in functional neuroimaging research (Duncan and Owen 2000; Nelson et
al 2010; Yarkoni et al 2011; Chang et al 2013). With the emergence of functional
MRI it has been subjected to a diverse range of mapping and parcellation studies,
such as cytoarchitectonic mapping (Mesulam and Mufson 1982; Kurth et al
2010a), as well as rCBP studies employing connectivity markers sourced from
tractography (Nanetti et al 2009), MACM (Wager and Barrett 2004; Mutschler

86



Chapter 3. Example Data

et al 2009; Kurth et al 2010b), and resting-state (Nelson et al 2010; Cauda et al
2011; Deen et al 2011).

3.4.1 Results

All internal validity metrics agreed that a 2-cluster separation into an
anterior and posterior subdivision fitted the rsfMRI source data best. The 2- to
5-cluster solutions are shown as 3D volumetric/voxel plots in Fig. 15a. The 3-
cluster rsfMRI solution added a medial parcel (green), extending more into the
anterior parcel (blue) rather than the posterior parcel (orange) of the 2-cluster
solution. The 4-cluster rsfMRI solution further subdivided the medial and part of
the posterior parcel into dorsal-anterior and medial parcels (green and red,
respectively), whereas the 5-cluster solution added only a thin parcel (magenta)

in between the aforementioned dorsal-anterior and medial parcels.

Likewise, for dMRI data the 2-cluster solution separated the R insula into
anterior and posterior subdivisions. However, the Davies-Bouldin index slightly
diverged from the other metrics, instead suggesting a 3-cluster solution to best fit
the source data (see Fig. 15b). The shape of the dMRI clusters also showed a
different picture than the rsfMRI results, particularly for the 3- and 5-cluster
solutions. The 3-cluster solution added a medial parcel that did not extend as
much into the dorsal direction as the rsfMRI 3-cluster solution did. Slightly more
agreement between modalities was found in the 4-cluster solution, where the
posterior parcel was subdivided into a dorsal (blue) and ventral (red) part, the

latter of which was further split in the 5-cluster solution.

Functional parcellation of the 2-cluster rsftMRI solution for the insula were
in line with prior parcellations (Kelly et al., 2012). In addition, Nanetti et al.
(2009) suggests a common parcellation of the insula along the anterior-posterior
axis for dMRI data. The 4-cluster dMRI parcellation furthermore visually
resembles the insula’s functional differentiation uncovered by (Kurth et al 2010b)
using a meta-analytic approach, with only our ventral-anterior parcel (red)

extending more anteriorly than theirs.
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Figure 15 R Insula results from the rCBP procedure. a Insula parcels for the two-, three-
, four-, and five-cluster solutions obtained from rsfMRI (top row) and dMRI (bottom row)
connectivity. All images are in the same view (right-sided) as Fig. 12b. b Internal validity scores
for all tested solutions (k=[2,3,4,5]). The Silhouette index (left) and the Calinski-Harabasz index
(right) indicate a better fit through a higher score, whereas the Davies—Bouldin index (middle) is

better when lower

As was the case for the SMA parcellation, additional results were also obtained
for the Insula parcellation by keeping the CBPtools configuration between the

ROIs consistent. These results are outlined in Fig. 16.
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Figure 16 Validity metrics for the R insula. a Group similarity scores (i.e., the similarity
of individual clusterings to the group-clustering) using the ARI with the cluster number k on the
x-axis, comparing rsfMRI (blue) to dMRI (orange). b Accuracy of the relabelling of individual
subject cluster labels to a reference clustering, calculated as the percentage of overlap between
both clusterings. ¢ Cophenetic correlation scores of the reference clustering for k = [2, 3, 4, 5]

based on the rsfMRI (blue) and dMRI (orange) modalities

3.4.2 Discussion

While results for the preSMA-SMA parcellation were rather straightforward,
this was not the case for the R insula parcellation for which many different
suggestions for optimal cluster solutions exist in the literature [2-cluster (Cauda
et al 2011), 3-cluster (Deen et al 2011; Chang et al 2013), and 4-cluster (Kurth et
al 2010b), as well as various solutions exceeding our krange (Kelly et al 2012)].
These differences may in part be caused by relatively small data sets with different
properties, difficulties on account of intersubject alignment when delineating the
ROI mask, as well as variability between research groups in their implementation
and use of methods and imaging modalities. Our results suggested a 2-cluster
solution to best fit both the dMRI and rsfMRI based connectivity markers,
although this does not imply it is neurobiologically optimal. Early work on the

insula has provided evidence for an anterior (dysgranular) and posterior (granular)
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subdivision separated by the central insular sulcus (Brodmann 1909).
Cytoarchitectonically the posterior insula can be further subdivided into two
dorsal posterior areas and one ventral posterior area (Kurth et al 2010a), but no
evidence exists for the anterior insula. Whereas the 2-cluster solution matched
well between the dAMRI and rsfMRI modalities, the results diverged at the 3- and
5-cluster granularities. The mid-posterior cluster appearing in the dMRI 4-cluster
solution (Fig. 15a; red) and the mid-anterior cluster appearing in the rsfMRI 4-
cluster solution (red) made the solutions at the 4-cluster granularity more similar.
However, the rsfMRI mid-posterior cluster (green) extends more dorsally than its
dMRI counterpart. Meta-analysis of the insula (Kurth et al 2010b) resembles the
4-cluster solution of the R insula, associating the posterior cluster (blue) with
sensorimotor function, the ventral-anterior cluster (orange) with social-emotional
functions, the dorsal-anterior cluster (green) with cognitive functions, and the
medial cluster (red) with chemical sensory functions. The medial cluster extends
further into the posterior direction for the dMRI parcellations than is the case for
the meta-analytic results, and in addition extends further dorsally for the rstMRI

parcellation.

3.5 Amygdala Parcellation

Located deep within the temporal lobe of the brain and considered part of
the limbic system, the amygdala is associated with the processing and regulation
of positive and negative emotional valence (Ball et al 2009) [e.g., fear, anxiety,
and social behaviour (Morris et al 1996; Phelps and LeDoux 2005; Adolphs 2010)]
both in animals and humans (LeDoux 2007; Janak and Tye 2015), as well as
associations to multiple disorders (Hayman et al 1998; Boccardi et al 2002; Wiest
et al 2006; Garcia-Marti et al 2008). Animal tract-tracing studies uncovered that
the amygdaloid complex consist of multiple nuclei, each uniquely connected to
other areas of the brain (Morrison and Salzman 2010). Mapping studies based on
cytoarchitecture support a grouping of amygdaloid nuclei into a centromedial,

laterobasal, and superficial group (Amunts et al 2005).

3.5.1 Results

Like the other two ROIs, the model that best fitted the data in the R
amygdala was bipartite. Nevertheless, the 2-cluster solutions for rsfMRI and
dMRI connectivity differed substantially (Fig. 17d and e). On the one hand, the

rsfMRI 2-cluster solution showed a dorsal (superior) and ventral (inferior)
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subdivision of the amygdala. On the other hand, the dMRI 2-cluster solution
showed a medial and lateral subdivision. At higher clustering granularities,
clusters split further among the aforementioned axes rather than finding common

ground.

The Silhouette and Calinski-Harabasz indices (Fig. 17a) suggested a 2-
cluster solution to best fit the rsfMRI source data. However, the Davies-Bouldin
index instead suggested a 5-cluster solution to fit better. The 2-cluster solution
approximated prior functional parcellations of the amygdala (Mishra et al 2014;
Zhang et al 2018) and also prior cytoarchitectonic mapping of the region (Amunts
et al 2005). The dorsal cluster (orange) overlapped with the cytoarchitectonic
outline of R amygdala centromedial and amygdalostriatal subregions, whereas the
ventral cluster (blue) overlapped with the laterobasal and superficial subregions.
At the 3-cluster granularity the ventral cluster was divided into a cluster
resembling the cytoarchitectonic laterobasal subregion (blue) and one resembling
the superficial subregion (green), the latter of which is best seen from a left-sided
view (Fig. 18b). The 4-cluster solution subdivided mostly the dorsal cluster
(orange), with the new cluster resembling the amygdalostriatal subregion.
However, it appeared far larger than its cytoarchitectonic counterpart. The 5-
cluster solution further subdivided the ventral cluster (blue), but here no further

cytoarchitectonic subdivisions exist.

For the dMRI clusterings, all validity indices (Fig. 17a) suggested a 2-cluster
solution to best fit the source data. As the clustering granularity increased, the
R amygdala split further along its medial-lateral axis. Previous parcellation works
using dMRI data (Solano-Castiella et al 2010; Saygin et al 2011; Wen et al 2016;
Fan et al 2016) also found similar clusters along the medial-lateral axis. ARI
similarity of individual clusterings to the group-level clustering (Fig. 17b) was
higher for clusterings on dMRI data than on rsfMRI data, also reflected by the
relabel accuracy (Fig. 17c).
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Figure 17 R amygdala results from the rCBP procedure. a Internal validity scores for all

tested solutions (k=[2,3,4,5]). The Silhouette index (left) and the Calinski-Harabasz index (right)
indicate a better fit through a higher score, whereas the Davies-Bouldin index (middle) is better
when lower. b Group similarity scores (i.e., the similarity of individual clusterings to the group
clustering), with the cluster number k on the x-axis, comparing rsfMRI (blue) to dMRI (orange).
c Relabel accuracy displayed in a similar format as b. d The two- and three-cluster solution of

the R amygdala for rsfMRI. e the same for dMRI

Due to the strangeness of the layered pattern of clusterings found in the
dMRI clusterings along the medio-lateral axis at high clustering granularity, the
long-range connectivity profiles of R amygdala voxels were assessed in isolation.
While the visual representations of the clusters mapped onto the R amygdala ROI
(Fig. 19) look relatively similar, the ARI scores reveal that this is not the case
as more local connections are removed from the target features (Fig. 20). The k
= 2 cluster solution for the 5mm run had an ARI of .9, whereas the 20mm and
40mm solutions had .8 and .46, respectively. At higher clustering granularities,
the 4mm solution remained at low similarity to the original clustering solution.

However, while the 5mm and 20mm results each revealed less similarity at the k
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= 3 granularity, they became more similar to the original solution again at k = 4
and 5. Nonetheless, two of the three assessed validity indices, the Silhouette index
and the Calinski-Harabasz index, indicated that the 2-cluster solution best fitted
the data as per the original clustering results, as well as the 5mm, 20mm, and
40mm results. The Davies-Bouldin index suggested a best fitting 3-cluster solution
for the original results as well as the 5mm results. For the 20mm and 40mm
results, however, the Davies-Bouldin index instead suggested a better fitting 5-
cluster solution. Taken together with a decrease in similarity as a larger area of
local connectivity was excluded from the target features, this may hint that a
more strongly coherent 2- or 3-cluster solution was driven predominantly by

patterns in local connectivity.
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Figure 18 R amygdala metrics and parcels for the 2, 3, 4, and 5-cluster solutions. a
Cophenetic correlation scores of the reference clustering for both rsfMRI (blue) and dMRI
(orange). b Cluster solutions for all investigated values of k mapped onto the original ROI image,

for both dMRI (top row) and rsfMRI (bottom row)

Fig. 21 is a visual representation of the target voxels that most contributed
to the separation of clusters of the original 2-cluster solution. These voxels are

mostly in the same hemisphere as the ROI, with a handful of voxels located in
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the left hemispheric amygdala. However, more interhemispheric connections may
be expected to the left amygdala, as the medial amygdala is suggested to be
strongly connected with its interhemispheric counterpart. Only a handful of voxels
being present here may have been caused by lower sensitivity in probabilistic
tractography on account of the thresholds used to improve specificity and

counteract false positives.

Original No Seed (5mm)
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Figure 19 R amygdala parcels for k = [2, 3, 4, 5] using different target features. The
top left shows the parcels when ROI voxels have a connectivity profile containing all whole-brain
grey matter voxels. The top right shows the parcels that result from extracting the ROI voxels
from the target features including a border of 5 mm around the ROI. The bottom left and right

show the same, but with a border of 20 and 40 mm respectively
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Figure 20 Similarity between R amygdala clustering results with different target
features. Local connectivity was excluded from the target features based on a border size of 5
(blue), 20 (orange), 40 (green) mm. The ARI was calculated between the original (all features

included) for k = [2, 3, 4, 5]

Posterior Right Supeariar

Figure 21 Mapping of target voxels that contributed most to the R amygdala 2-
cluster solution. The target voxels are displayed in red, whereas the R amygdala is displayed
in blue. The top row of figures was generated using Nilearn’s plotting tools (Abraham et al 2014),
whereas the bottom row was generated using Mango (multi-image analysis GUI;

http://ric.uthscsa.edu/mango/)
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3.5.2 Discussion

The 2-cluster solution best represented the data for both the dMRI and
rsfMRI modalities. The rstMRI parcellation of the R amygdala that best fit the
source data was a bipartite dorso-ventral subdivision. These results match earlier
findings of Mishra et al. (2014), likewise a dorso-ventral (superior-inferior)
subdivision in the 2-cluster solution using functional connectivity markers, and a
similar dorsal, ventral, and medial subdivision for the 3-cluster solution. The same
3-cluster solution was found by Zhang et al. (2018). Our validity metrics indicated
a best fitting 2-cluster solution, but as this does not necessarily imply
neurobiological accuracy a 3-cluster solution is likewise viable. Furthermore, the
parcellations visually correspond to the cytoarchitectonic mapping of the R

amygdala (Amunts et al 2005) up to the 4-cluster solution.

Where a bipartite dorso-ventral subdivision of the amygdala best fit the
rsfMRI data, the dMRI data instead best fit within a bipartite medio-lateral
subdivision. This pattern resembles the 2-cluster solution found by (Solano-
Castiella et al 2010) and Fan et al. (2016) in that the solution divided the
amygdala into a medial and lateral cluster. Tract-tracing of the rat amygdaloid
complex shows that the medial amygdala is related to connections between both
intrahemispheric amygdalae (Pikkarainen and Pitkdnen 2001). The lateral
amygdala is instead found to be connected to somatosensory cortical areas
(Jolkkonen and Pitkénen 1998). Solano-Castiella et al. (2010) note the possible
existence of a third cluster in between the medial and lateral clusters which
resembled the pattern of clusters found for the CBPtools-derived 3-cluster

solution.

The amygdala is a peculiar region on account of its spatial location, which
may explain the differences between the rstMRI and dMRI results. Whereas the
rsfMRI parcellations resemble cytoarchitectural subdivisions, the dMRI results
may instead be driven by spatial artefacts on account of false positives in
probabilistic fibre bundle tracking (Descoteaux et al 2016; Zalesky et al 2016) of
subcortical areas. As the region gets split at higher granularities, it is possible
that instead of creating subdivisions based on neurobiologically relevant signals,
instead the subdivisions are driven by mnoise in the signal on account of
methodological idiosyncrasies. Investigating why such subdivisions occur at higher
granularities is beyond the scope of this work but is nonetheless and important
consideration when investigating clusters with dMRI data. Further investigation

was done to determine whether parcellations of the R amygdala were driven by
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within-ROI and short-range connections. dMRI data were parcellated after
excluding ROI-to-ROI connectivity (excluding a 5mm, 20mm, and 40mm border
around the ROI, see Fig. 19), resulting in mostly unchanged parcellations,

exhibiting the same medio-lateral pattern of subdivisions.
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OUTLIER DETECTION

This chapter outlines the analysis procedure and preliminary results
obtained from a side-project investigating outliers (and automated
detection thereof) in a sample to which the rCBP method will be
applied.

4.1 Approach

The aim of rCBP is to find biologically meaningful parcels within an ROI,
achieved by clustering the voxels in the ROI based on their connectivity profiles.
Using a large sample (see Sect. 3.1 [p. 78]), it was found that deviant connectivity
profiles substantially influence group-based clustering results. Such outliers can
arise due to various reasons and investigation was done into one possible reason
for high dimensional data: difference in intrinsic dimensionality. For this analysis
the primary focus was on the R insula ROI using rsfMRI data (see Sect. 3.4 [p.
86]), but included further exploratory results using the dMRI data and the R
preSMA-SMA and R amygdala in Sect. 4.3 [p. 100].

To identify outliers in the rCBP procedure, the connectivity matrices and
subject-wise clustering results provided as interim output by CBPtools were used.
For each subject a nearest-neighbour subject was identified using Euclidean
distance between connectivity matrices, with the resulting vector d being Z-
scored (Fig. 22a). K-means (k = 2) clustering of d revealed a separation around
0, providing a conservative threshold (Fig. 22b). Two additional thresholds of
1.69 (.95 left tail area on a standard normal distribution) and a liberal 2.5 were
added to the list of evaluated thresholds. Group parcellations for each k using

hierarchical clustering with average linkage and Hamming distance were
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calculated after excluding outliers based on these thresholds. The ARI between
k-means clustering results of all subjects was computed, retaining the highest
values per subject as a similarity vector a (Fig. 22c). Principal component
analysis was performed on the connectivity matrices, noting the number of
components retaining 95% of variance. Correlation the component numbers to d
uncovers whether there is a relationship between intrinsic dimensionality of the

connectivity matrices and their distances to one another.
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Figure 22 Methods for detecting deviant connectivity profiles (outliers). a Computing
the nearest-neighbour Euclidean distance for each subject as vector d and Fisher’s Z-transforming
it. b Derivation of an estimate for the conservative threshold using k-means (k=2) to cluster
deviant and non-deviant connectivity matrices by their distances d. The black horizontal line
shows the separation, which was rounded to 0 for usage as a threshold value. ¢ ARI between the
cluster solutions of each combination of pairs for each individual subject. A similar approach to

figure a was used to generate vector a.

4.2 Results

Applying the thresholds of 0, 1.69, and 2.5 removed 134, 32, and 14 subjects,
respectively. When correlating distances d (Fig. 22a) to the similarity vector a
(Fig. 22c), correlations of -.38, -.41, -.49, and -.53, for k = 2, 3, 4, and 5, were
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found, respectively. This result suggests outliers cluster differently, thus including
them into a group-level consensus might be detrimental. Accordingly, differences
were found between group-level parcellations (Fig. 23b). For instance, when
comparing the liberal 2.5 threshold-removed group parcellation (Fig. 23b,
column two) with a group parcellation without outlier removal (Fig. 23b, column
one), there was only an 81% overlap, ARI = .55 for £ = 3 (ARI=.67, and .71 for
k = 4, 5, respectively). Further comparisons are illustrated in Fig. 23b. The
distances d were related to the number of principal components retaining 95% of
variance with correlation of -.79 (Fig. 23a). That is, if intrinsic dimensionality
was low for a subject, the associated connectivity matrix would be more distant

to the rest of the sample.
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Figure 23 Group-level clustering of R insula with and without outlier-removal. a
Correlation between distances d (Fig. 22a) and ARI a (Fig. 22c). The vertical lines represent
outlier thresholds for 0, 1.69, and 2.5 as yellow, red, and green, respectively. b Group-level
clusterings of the R-insula ordered by k clusters and outlier threshold. The overlap and ARI values
portray the similarity of the clustering to the clustering without outliers removed. Visualized with

the BrainNet Viewer (Xia et al 2013).

4.3 Additional Exploratory Analyses

While the primary analysis focuses on the rsfMRI data for the R Insula, a
preliminary assessment of the other two regions, the R Amygdala and R preSMA-
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SMA, was also performed (Fig. 24). Furthermore, an exploratory analysis was
performed to uncover what may cause subjects to be outliers by assessing whether
the deviant index relates to age, gender, framewise displacement, and acquisition
quarter (i.e., time at which the subject data was acquired). Note that all the data

presented in this section is exploratory, requiring further investigation.
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Figure 24 Correlation between the deviant index and component number. On the left,
the correlation between the deviant index and the number of components explaining 95% of the
variance of connectivity is shown for the R amygdala. On the right, the same is shown for the R

preSMA-SMA region. Both regions exhibit a strong correlation between these two metrics.

Subjects were divided into 4 equally sized groups based on the number of
components explaining 95% of variance for each region (in ascending order, from
low component number to high). Age and gender distributions, as well as
framewise displacement values were then compared between groups, finding no
remarkable differences. Lastly, the number of components was correlated to the
acquisition quarter for each region using Spearman correlation. A small but
significant effect was found for all regions (Fig. 25). Subjects were again divided
into four equally sized groups, this time based on acquisition quarter, to assess

the gender distribution per group, again finding no imbalance.
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Figure 25 Spearman correlation components to acquisition quarter. From left to right
component numbers derived from the connectivity matrices of the Insula, Amygdala, and
preSMA-SMA regions are each significantly correlated to the acquisition quarter. Each dot

represents a subject in the data set.
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4.4 Discussion

The differences in clusterings highlight the influence of outliers. While
assessment of the group-level parcellations reveals that clustering results were
relatively stable across thresholds for £ = 2, ample evidence suggests more than
2 clusters in the R insula (Kurth et al 2010b; Cauda et al 2011; Deen et al 2011).
As linkage algorithms in hierarchical clustering as well as k-means clustering are
sensitive to outliers (Duda et al 2001), it is important to remove them by using a
proper identification threshold. In the future focus will be placed on automatic

identification of parameters that lead to biologically meaningful parcellations.
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(GENERAL DISCUSSION

Regional connectivity-based parcellation is a widely used procedure for
investigating the structural and functional differentiation within a region-
of-interest based on its long-range connectivity. A Python-based software
package has been developed for applying the rCBP procedure with resting-
state or diffusion MRI data.

5.1 CBPtools

CBPtools, an open-source Python package for performing the rCBP procedure,
was outlined and introduced. It is capable of computing two commonly used measures
of brain connectivity (i.e., resting-state and diffusion-weighted MRI), can apply three
different clustering algorithms to derive connectivity-based parcellations (i.e., k-means,
spectral, and agglomerative clustering), and uses various metrics for cluster validation
(i.e., the Silhouette coefficient, Davies-Bouldin index, and Calinski-Harabasz index).
Furthermore, it can compute group clustering results by aggregating clustering results

from all subjects and provide detailed reports on every aforementioned computation.

The architectural design of CBPtools enables an easy to use, flexible, and
reproducible approach to applying the rCBP procedure to large data sets. At the same
time, the software is structured such that additional processing tasks as well as
compatibility features (e.g., compatibility with data types, external processing software
such as FSL, or (Python) packages for data representation) can easily be supplemented
through git PRs via the GitHub repository (see Sect. 2.10 [p. 70]).

Factors contributing to its ease of use are the command line utility (i.e., using the
‘cbptools’ entry point for setting up and running a project), using the YAML format

(on account of it being a human-readable data-serialization language) for the



External Resources

configuration file allowing manual and automated configuration, compatibility with
workload managers, validation of input, extensive usage documentation, and the fully
automated workflow for applying rCBP. Several ‘quality of life’ features have been
added, such as the automatic extraction of an ROI from an atlas foregoing the need of
manual ROI delineation (see Sect. 2.8.4 [p. 66]), and an automated comparison of
clustering results to predefined reference images (see Sect. 2.8.5 [p. 67]). Validation of
input data and configuration files is performed such that most common mistakes are
caught at the start of the procedure. Therefore, problems that would normally arise
later in the processing pipeline are recognized early, preventing wasteful use of
processing resources. Furthermore, the structure of the CBPtools workflow splits all
processing tasks into small parts (i.e., jobs in a workload manager). This optimizes
parallelization and ensures preferential treatment over larger and resource heavier jobs

in workload managers that make use of a priority queueing system.

The procedure is flexible due to its customizability through a configuration file,
allowing for fine-tuned processing for each ROI. This allows for a wide array of
applications. For example, not only can a choice be made between various clustering
techniques, but each technique can also be further customized with options, such as
selecting an initialization method and the number of repetitions for the k-means
clustering algorithm. Connectivity and clustering methods have been carefully chosen
to both reflect the most popular and the most widely evaluated approaches in the

brain mapping community.

The core dependencies of the CBPtools software (see Sect. 2.3 [p. 44]) are all open
source, continuously developed, widely used, and widely supported packages within
the (neuro)scientific Python community. Hence, their continued future support is a
realistic expectation, although CBPtools will continue functioning with the package
versions it was built with (i.e., the versions noted in its setup file). Note that FSL is
not a Python package but considered an external dependency (that the user must
install themselves) only required for processing dMRI data in the pipeline. Nevertheless,
the FSL software also enjoys continuous development and is well known (and well

used) in the neuroscience community.

The CBPtools pipeline applies user-defined pre-processing techniques to the input
masks (i.e., ROI and target mask) and the rsfMRI or dAMRI images prior to computing
the ROI-to-target voxel-wise connectivity matrices. These matrices are subsequently
used to obtain a clustering, using one of the three currently available clustering
techniques (i.e., k-means, spectral, and hierarchical clustering). The given clustering

solutions are then grouped (provided the input data is in the same reference space and
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the software is configured to return group, rather than individual, clustering results).
All the obtained results are then subjected to one or more user-defined validation
metrics, ultimately resulting in a report of all outputs represented as plots, tables, and
NIfTT images. Various alternative approaches are implemented, such as different
clustering and cluster validation techniques, the ability to meaningfully use multi-
session input data, as well as the option to perform single-subject parcellations in

native space.

By providing or specifying input as well as parameters given to CBPtools, any
parcellation work can be reproduced with relative ease and, importantly, can be
compared to other works using this tool. To illustrate the efficiency of the procedure,
benchmarks were provided (see Sect. 2.9 [p. 68] and Appx. 6) as a guideline for what
can be expected when executing CBPtools on a similar data set, with similar settings,
on the average computational cluster. With the CBPtools output, a user will be able
to quickly generate parcellations and validity metrics that can either be used directly
or used to inform a more detailed post-hoc analysis. For instance, the selection of
clustering granularity as well as multi-modal integration of cluster solutions may
require further fine-grained and region-specific analyses. It was opted to provide all &
cluster solutions with guidance for the user to choose the optimal solution, as there
likely is no ’one true parcellation’, but instead biologically relevant maps at different

granularities.

5.1.1 Future Extensions and Refactoring

Due to CBPtools being open source, anyone can make changes and extend the
code to suit their needs. Such changes may be committed to the master branch of the
software making them readily available for any CBPtools user or kept in a separate
repository as an alternative to CBPtools (e.g., for feature additions that fall outside of
the scope of CBPtools). Recommended features that build upon existing functionality
to be added in future version of CBPtools include the integration of other modalities,
multi-modal analysis of parcellation results, additional validity metrics, and different
clustering approaches. It is proposed to integrate the MACM and structural covariance
modalities, as they are found to be valuable for studying the brain and adding an
additional layer of information to multimodal CBP (Eickhoff et al 2015; Plachti et al
2019). The currently implemented cluster validity metrics evaluate which £ cluster
solution fits the data best (where k > 1). When the question arises whether an ROIT
can be clustered at all (i.e., has more than one cluster) the currently implemented

validity metrics are not enough. Various metrics exist that may answer this question,
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such as the gap statistic and the Hopkins statistic. The gap statistic performs a
hypothesis test of clustered data (e.g., a 2-cluster solution) against a null hypothesis
of random noise (equivalent to not clustering the data). If the resulting score is
significantly lower for the k-cluster solution than the no-cluster solution, the k-cluster
solution fits the data worse than a no-cluster solution. The Hopkins statistic assesses
the data for cluster tendency, indicating whether the data is clusterable (i.e., it is likely
there are clusters in the data, although the metric does not reveal how many) or
whether it is unlikely there are any statistically significant clusters in the data. Since
this method is performed on the connectivity markers instead of the clustering results,
it can be implemented as an early warning system to prevent unnecessary occupation
of computational resources. Lastly, other clustering methods such as fuzzy c-means
clustering and ICA may be introduced, as well as alternatives to clustering such as
probabilistic, graded, or boundary mapping. Care must be taken, however, that the
addition of such methods does not exceed the scope of the CBPtools project (see Sect.
2.1 [p. 39]).

Further improvements to the usability of CBPtools can be made. Currently users
are expected to set up their parameters using a configuration YAML file (see Sect.
2.5.2 [p. 48]). This file must be formatted according to the YAML specifications,
reference specific parameter keys, and use proper expected value types. None of these
are referenced or validated inside the document itself, having users crucially depend
on documentation. While YAML is a very human-readable format, it is not comparable
to a user interface (UT) in terms of efficiency for manual data entry. A UT deals with
both parameter keys and document specifications, while also providing information
about what kind of values can be expected (e.g., through a ‘combobox’ providing an
exhaustive list of values, or a checkbox for Boolean values). The npyscreen library is
an excellent fit, as it provides a framework for developing a terminal Ul. This allows
users to set up their configuration file through a UI that is displayed inside of a
terminal — thus benefiting from a Ul even on systems that do not allow graphical
interfaces (common on computational clusters, as graphical interfaces as resource
intensive). Setting up a CBPtools project using the configuration YAML file is,
however, an important feature for users wishing to automate the entire setup process.
Therefore, a terminal Ul should only assist in creating the configuration YAML file,

not replace it.

Currently CBPtools has three processing steps that, for the sake of coherence,
should be separated from the primary processing pipeline: Dataset validation (see Sect.
2.5.3 [p. 49]), region extraction from an atlas (see Sect. 2.8.4 [p. 66]), and mask pre-

processing (see Sect. 2.6.1 [p. 52]). Dataset validation is a lengthy and resource
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intensive procedure applying various compatibility tests to an existing dataset,
including (but not limited to): NIfTT image assessment, inferring (and double-checking
with manual configuration parameters) the repetition time from NIfTI image headers,
evaluation of subject-wise data (i.e., to discover whether there are subjects with
missing data, and whether all input time-series images are in 4D sharing the same
shape, affine, and number of timepoints), and an assessment of low-variance voxels in
subject-wise time-series (see Sect. 2.6.2 [p. 54]). Separating this procedure into its own
CBPtools subcommand (as “cbptools validate-dataset ..”) makes the procedure
optional, as it does not have to be executed when the same dataset is used multiple
times. This validation procedure should be very explicit in its warnings and errors and
provide hints to potential solutions (e.g., removing subjects with missing, incomplete,
or incompatible data). The primary processing pipeline should still perform a simplified
validation approach aimed at wvalidating configuration parameters, but should
otherwise gracefully exit the procedure upon encountering compatibility issues with
the dataset.

Automatically deriving a region from an atlas is currently available as part of the
setup procedure, but the application is rather arcane (i.e., the region-id must be
manually derived and entered, and as a non-default parameter it lacks discoverability).
A preferable approach separates region extraction from the setup procedure into a new
CBPtools command that uses a terminal Ul. Users can then select and download
predefined atlases and select regions by name, as most atlases contain a complementary
meta-data file tying region-ids to region names. This can be combined with mask pre-
processing, currently implemented in the masking task. Pre-processing a mask is a very
fast and resource inexpensive procedure. Many things can go wrong when pre-
processing mask images, especially if there is a mix-up of masks stored in neurological
and radiological convention, or if the NIfTI header is not properly set up. The latter
is common for values that cannot be automatically derived from the NIfTT header,
such as repetition time (Brett and Poline 2016). It is impossible to address all potential
issues, hence separating the masking task from the primary pipeline allows for manual

verification of the input masks prior to performing connectivity-based parcellation.

CBPtools is agnostic to the structure of the dataset, as file paths to data are
manually defined in the configuration file. The brain imaging data structure (BIDS) is
a specification for how neuroimaging datasets should be structured (Gorgolewski et al
2016). This provides many advantages, but one key advantage is that it enables
automatic derivation of dataset specific properties through its clearly defined metadata.
Implementation of BIDS compatibility in the setup procedure allows CBPtools to

exploit this advantage and significantly simplify the configuration and setup
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procedures. Along with this change, CBPtools should adhere to the BIDS derivatives
specification when storing its output. This allows users to easily append CBPtools

output to their datasets for subsequent release.

The CBPtools workflow was originally built upon the Snakemake workflow
management system. Nipype is a promising and feature-rich alternative aimed towards
managing pipelines for neuroimaging data, whereas Snakemake is more popular in the
bioinformatics community. Not only is nipype better known in the neuroimaging
community, it ‘out-of-the-box’ provides bindings for other popular neuroimaging
software such as SPM and FSL. Workflow tasks are currently designed using a custom
set of methods that format tasks into Snakefiles, a Snakemake-specific syntax for
writing workflows. Snakemake lacks the Python bindings for automatic workflow
generation (and lacks documentation on its internal workings), preventing a pure
Python solution. Nipype, on the other hand, allows tasks to be written entirely in
Python in a well-documented format. Any researcher can follow nipype tutorials and
use this information to extend or modify the CBPtools workflow to meet their own

unique requirements.

To further increase the coherence, applicability, and extendibility of CBPtools
various refactoring changes should be performed. Refactoring is a technique for
restructuring the codebase without changing the outward-facing behaviour of the
software. This includes rewriting code to make its structure more interpretable (i.e.,
improving coherence) by separating modules and submodules, using better suited
design patterns and external modules to optimize execution time and efficiency, and
use abstract and data classes to enhance readability and extendibility of the codebase.
Design patterns, such as the template pattern, can be used to separate parts of the
code such that improvements and modifications minimally impact unrelated or
tangentially related functionality. Abstract base classes complement further
development by defining mandatory methods and properties. They are then used as
blueprints for other classes that interact with existing CBPtools functionality. For
example, refactoring image processing functionality into “Image” classes (i.e., Mask
and TimeSeries classes) will make the image processing steps more coherent by
separating each individual step (e.g., smoothing, band-pass filtering, etc.). Together
with identifiable naming conventions for methods, the code can then more easily be
used as a reference for identifying processes involved in each task and in which order
they are applied. Abstract base classes ensure that outward facing functionality
remains consistent throughout the CBPtools software. All this should be accompanied

by more explicit docstrings and type declarations to improve the automatic generation
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of documentation, as well as dataclasses specifically designed to interpret configuration

parameters and manage various parts of the dataset.

Lastly, thorough integration testing of the CBPtools codebase should be
implemented. CBPtools has been extensively tested using exploratory testing,
benchmarking, and its output has been compared to the output of external tools and
research. However, with continued development of the pipeline exploratory testing
does not suffice. Integration testing allows future commits to the CBPtools repository
to be tested automatically against a predefined set of assertions. This significantly

decreases the chance of software bugs when changes are made.

5.2 Example Data

The most important aim of this work is the provision of a functional rCBP
procedure that results in biologically relevant and meaningful output. To illustrate
usability and to analyse the CBPtools output, three functionally and spatially different
ROIs were selected that underwent processing in the CBPtools workflow. ROI targets
were selected because of their popularity in rCBP literature (e.g., the MFC is
considered a gold standard for testing rCBP procedures, as it has a clear functional
and structural distinction at the borders between what is known as the preSMA and
SMA), making them easier to compare to external findings. To maintain consistency
between the ROIs, the same CBPtools configuration parameters and data (including
pre-processing procedures on said data) were used. The HCP data (Van Essen et al
2013) provided a sufficiently large sample that would not only highlight the ability of
CBPtools to deal with many large input files, but also allowed for more relevant

benchmarking.

Only recommended standard pre-processing techniques were applied to the HCP
data (see Sect. 3.1 [p. 78]) prior to its application in CBPtools, to ensure that the
resulting parcellations were based on methods implemented in CBPtools, rather than
those used outside of it. This ascertained that the same methods would be readily
available to those intending to use CBPtools for applying the rCBP procedure. The
CBPtools configuration was set up such that methods most popular in prior literature
(e.g., k-means as the clustering algorithm, and the Silhouette, Calinski-Harabasz, and
Davies-Bouldin indices for cluster validity) were used, and the parameter values
reflected default or recommended values where possible. All configuration values used

in the example data are also defined as the CBPtools default values, excepting those

112



External Resources

that require user definition. For example, a value that requires user definition is the

range of k clusters to compute, as this depends crucially on the input data and ROI.

The effectiveness of CBPtools in procuring resting-state functional and diffusion
MRI connectivity-derived parcellations on three functionally and spatially different
ROIs has been demonstrated. As outlined in the discussion sections of each ROI (see
Sect. 3.3.2 [p. 86|, 3.4.2 [p. 89], and 3.5.2 [p. 96]) similar results were found in existing
literature. The preSMA-SMA results showcase the ability of CBPtools, and by
extension the rCBP approach, to reproduce histological parcellations. Although results
at higher cluster granularities are added for completeness, their validity and relevance
are not further investigated as the 2-cluster solution is the most accepted and widely
reported solution in existing literature. The insula results highlight the subdivisions of
various k cluster solutions, showing commonalities between the results and existing
literature at several levels of clustering granularity. Despite differences between data
modalities, overlap can be found between subdivisions even at higher clustering
granularities. While this was not at all the case for the amygdala, revealing a stark
difference between modalities, existing literature has found similar results. The
peculiarity of the amygdala in terms of its spatial location, as well as the shape, form,
and location of its clusters, led to further investigation of the validity of the results.
These post-hoc analyses are not included in the CBPtools software as the most viable
and relevant methods used to further investigate may differ considerably between ROIs.
While these analyses did not contradict initial results, they do highlight the importance
of thoroughly investigating parcellation results even beyond the scope of what
CBPtools has to offer.

Divergence between validity indices (i.e., the Davies-Bouldin index from the other
validity metrics) highlights the importance of choosing a proper validity metric, each
of which assesses cluster validity in a unique way. Note that comparisons of validity
scores outside of the sample are meaningless, hence rsfMRI and dMRI validity scores
cannot be directly compared. For the R insula the divergence is not necessarily
surprising, as it shows transitional changes in cytoarchitecture (Kurth et al 2010a),
rather than sharp cytoarchitectonic borders present between the preSMA and SMA,
making it difficult to define stable hard borders. Similarity of cluster labels between
subject-wise clusterings may vary considerably. It is yet unclear what factors
contribute to the high dissimilarity between subjects on some cluster solutions and for
some ROIs. For instance, overlap between relabelled clusters for the individual
clustering results to the group-level clustering results on the 2-cluster preSMA-SMA
solution are high (see Fig. 14b), which may imply that the regions have strongly

divergent connectivity patterns that are stable between subjects. However, regions
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such as the amygdala show lower overlap values. This may in part be due to poor
signal to noise ratio with MRI in subcortical regions (Noble et al 2017). Nevertheless,
the solutions showcased here can be found in previously published works. However, no
studies performing a data-driven clustering using dMRI data for the R amygdala at

higher granularities was found.

Outliers in the subject-wise connectivity profiles were investigated and found to
cluster differently. Hence, when subsequent clustering results are used in computing a
group-level clustering, the ensuing clusters may not be representative of a general
population. Further research is necessary to identify the reason behind the differences
in connectivity profile and why they induce such marked changes in clustering. One
potential reason may be the change in multiband reconstruction algorithm in the third
quarter of the HCP data collection (Elam 2015), for which confound regressors can be
created. However, the extent to which this confound can be removed is unknown.
Another speculative candidate may be scanner drift (Dam 2017), as the data that was
used in this work was collected over a long period and the metric used to identify
outliers correlated significantly with the subject’s acquisition time (see Fig. 25). As
the constraints to data collection time cannot be circumvented for such large data sets,
it is possible similar effects can be found in other large samples. However, a more in-
depth analysis is necessary to make any statements beyond speculation at this point.
Regardless of the underlying reason, it is wise to identify abnormalities within the data
set prior to including subjects for the rCBP procedure and assess their influence on
ensuing clustering results. CBPtools includes no facilities for outlier detection, as there
is no gold standard means of their detection that is applicable, trustworthy, and

relevant for each data set.
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CONCLUSION

In this work the rCBP procedure is described within a historical context and
modern uses of the approach are outlined. Indications have been made as to why the
procedure is relevant to neuroscientists interested in brain mapping yet lacks publicly
available tools to perform the approach from start to finish. This has culminated in
the creation of the CBPtools Python software, used as an all-in-one package for
performing rCBP from an rsfMRI or dMRI data set up until the clustering and
validation results presented through figures and tables. Its procedure is outlined,
including a thorough description of its architecture, scope, implementation, and usage.
In addition, further quality of life features are highlighted. Lastly, its efficacy is

demonstrated using three commonly parcellated ROIs on a substantial data set.

By using CBPtools, any scientist interested in performing the rCBP procedure can
now easily and efficiently do so. Prior to its release, scientists would have to develop
their own processing scripts which is not only a challenging, but also a time-consuming
endeavour. The flexibility of existing features as well as the open-source and modular
nature of the software allow for an abundance of applications. Future developments
by first- or third-party developers may extend the software with suggestions for
extensions listed in Sect. 5.1.1 [p. 108]. While further development is encouraged, the

software can be used as-is to perform the most applied rCBP methods.

In summary, an openly distributed package has been provided for performing
rCBP for which, to our knowledge, there is currently no alternative. By introducing
CBPtools researchers are provided with the means to conduct reproducible, data-
driven rCBP analyses on multiple neuroimaging modalities and large amounts of

subject data.
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Abbreviations

ARI Adjusted Rand Index MRI Magnetic Resonance Imaging
b0 Maximum intensity acquisition NaN Not a Number
BET Brain Extraction (an FSL tool) PCA Principal Component Analysis
BOLD Blood-Oxygen Level Dependent preSMA Presupplementary Motor Area
CBP Connectivity-Based Parcellation PSS Proportional Set Size
CSF Cerebro-Spinal Fluid R Right
dMRI Diffusion MRI RAM Random-Access Memory
DTI Diffusion Tensor Imaging rCBP Regional CBP
DWI Diffusion-Weighted Imaging ROI Region of Interest
FIX FMRIB's ICA-based X-noiseifier rsfMRI Resting-State Functional MRI
FWHM Full Width at Half Maximum RSS Resident Set Size
HCP Human Connectome Project SC Structural Covariance
I/0 Input/Output (or read/write) SMA Supplementary Motor Area
ICA Independent Component Analysis T1lw Tl-weighted
ICA- ICA-based Automatic Removal Of T2w T2-weighted
AROMA Motion Artifacts
k  The number of clusters in k-means USS Unique Set Size
clustering
MACM Meta-Analytic Connectivity Modelling VMS Virtual Memory Size
MB Megabytes WM White Matter
MFC Medial Frontal Cortex YAML YAML Ain’t Mark-up
Language

MNI Montreal Neurological Institute
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Appendix 1: Built-in rules for input validation

Here all built-in rules and requirements are listed for input validation. All
standard rules have the rule  prefix, whereas custom rules (that only apply to
one configuration parameter) are prefixed with rule custom_ . If a rule fails to
validate, commonly a RuleError is raised (although other errors may be possible
as well). This error is caught and logged, rather than expressed by halting further
code execution. This is done so that all parameters may be assessed, and a

complete log can be given of all problems in the configuration file.

rute_required This rule assesses both whether the entry is required (and therefore
may not be left blank), and whether the entry has a dependency on another
entry and if this dependency is met (e.g., the time_series parameter is only
used if the modality is set to ‘rsfmri’, hence time series depends on the
modality field, and modality = ‘rsfmri’ g the requirement). If the
dependency’s value (or its default value in case it is left blank) does not
meet the requirements, a DependencyError is raised. If the entry is not
required and left blank, the default value will be used. In other cases,

validation will pass without any further changes.

rule_type Checks if an entry has the correct object type (e.g., integer, string,
boolean, float, or list). Iterable object types (except strings, which are
iterable by character) will furthermore have the object type of their contents
assessed. For example, a listlstringl type declaration in the configuration
schema first assesses whether the object is a list, and then whether all items
in the object are of the string type. In case of floats, scientific notation may
be used for very small numbers (excessively large numbers are not used).
By default, these entries are typed as strings, hence why this rule also

performs a conversion to float to ensure the entry meets its requirements.

rule_contains This rule checks whether the entry’s value contains a must-have
value. For example, a substring that must be present in a string (such as
the {participant id} wildcard substring that is required in some input file

paths).

rule_allowed This rule will be used if an entry is only allowed to consist of values
that match a list of predefined allowed values. The use of expansions (i.e.,
the * character) can be used. This rule differentiates iterables from non-

iterables and ensures that all values in an iterable entry match the allowed
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criteria. For example, a predefined list of allowed values may look like:
‘kmeans’, ‘spectral’, and ‘agglomerative’. In this case, the entry must contain

one of these values.

rule_max This rule ensures the entry is not larger than a given maximum value.
This means that the entry can have a value up to and including the

maximum value, but not beyond it.

rule_min The same as rule max, except it ensures the entry is not smaller than

a predefined minimum value.

rule_maxlength This rule ensures the entry does not contain more items than a
predefined maximum length. For strings, it counts the number of characters.

For iterables, it counts the number of objects in the iterable.

rule_minlength The same as rule maxlength, except the entry may not contain

fewer items than a predefined minimum length.

rule_custom_bandpass This is a custom rule for the bandpass filtering parameter. It

ensures that the low-pass entry is larger than the high-pass entry.

rule_custom_voxdim This is a custom rule for the voxel dimensions parameter. It
ensures that either exactly 1 or 3 values are entered in a list. It is common
that voxels (3-dimensional) are equivalent in size on all dimensions, which
is expressed by entering only one value. In cases where the sizes differ, three
values can be entered. However, two values or more than three values cannot

be interpreted and are hence not allowed.

rule_custom_tr A custom rule that logs a warning, rather than raising an error.
The repetition time (TR) entry must be entered in seconds. It may
mistakenly be entered in milliseconds. Hence, if the entry is larger than 100
(a TR at or above 100 is extremely unlikely) the user is warned that they

may have made a mistake.

rule_custom_agglomerative_linkage A custom rule for the linkage field of
agglomerative clustering. If the selected linkage is ‘ward’, then the distance
metric must be ‘Fuclidean’. Since the default distance metric is ‘Euclidean’,

this rule also passes when the distance metric entry is left blank.

rule_custom_has_sessions A custom rule for the sessions field. If multi-session input
data is to be used, then the input data file paths must contain the {session}
wildcard substring. This substring is replaced with the different session

identifiers to find the data. Conversely, if the wildcard substring is given
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but no sessions are specified, then there are no values to replace the wildcard.

This will subsequently raise a RuleError as the file paths appear invalid.

rule_custom_space_match T CBPtools it is possible to provide masks per subject in
their native space. This prevents group analysis, as there is no common
reference space that can be used to compare images. When using a standard
space ROI, it is possible to use the default MNI152 whole-brain grey matter
mask as a target mask. In native space, a target mask must be defined per
subject as there is no default. Furthermore, this rule ensures that the mask
input file paths contain the {participant id} wildcard substring, as the masks
are now subject-specific. It is also not possible to use multi-session data with
native masks, as the former requires data to be merged which may not be

straightforward with multi-session data in native space.

rule_custom_benchmarking This rule ensures the psutil package is installed when
benchmarking is requested. Benchmarking is not a feature that is enabled
by default, hence foregoing installing psutil as a dependency, instead
requiring a manual install. Note that snakemake uses psutil for

benchmarking, and CBPtools uses snakemake’s benchmarking utilities.

rule_custom_spectral_kernel When selecting the ‘precomputed’ kernel for spectral
clustering, the input data must consist of adjacency matrices. This can be
done by setting the modality to ‘connectivity’ and, instead of regular
connectivity matrices, provide adjacency matrices as input. Note that the
distinction between the two matrices cannot reliably be made, hence this is

not validated.

rule_custom_references MNedian filtering cannot be used when using reference
images, because reference images must match the ROI precisely in terms of
voxel coordinates and number of voxels. Median filtering alters the ROT and
cannot be applied to a non-binary image. Since the reference images contain

at least two clusters, they are not binary and cannot be median filtered.

rule_custom_resample Resampling of subject-specific (i.e., native) masks cannot be
used on the ROI mask if the xfm and inv_ xfm entries are provided for dAMRI
data. When using these input files, the transformations will instead take

place using the probtrackx?2 tool.

rule_custom_has_inv_xfm [f the xfm entry is defined, then the inv_xfm entry must

also be defined (and vice versa).
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Table 3 is an example of what a ‘participants’ file may look like in its tabular
format. Note that the file contents itself must use a consistent separator (e.g., a
tab or a comma). CBPtools only uses the participant_id column (regardless of its
location) and requires a header that names one column in the file as such. The
age and gender columns are added to illustrate that a ‘participants’ file may
contain more data than just the participant-id, as this will not obstruct CBPtools

in its functioning.

Table 3. Participants file example

participant_ id age gender
sub-001 23 M
sub-002 28 M
sub-003 36 F
sub-004 24 M
sub-005 23 F
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Table 4 is an excerpt from a real confounds file. A typical confounds file
consists of linear (*1) and quadratic (*2) grey matter (GM), white matter (WM),
cerebrospinal fluid (CSF) and global signal time-series. Additionally, 24 motion
parameter time-series are added for pitch, roll, yaw, motion in the x, y, and z
direction, as well as their quadratic components and of all these the derivatives.
If a linear trend or constant should be added (which is recommended), they should
be added as additional columns. The number of rows in the confounds file must
be equivalent to the number of timepoints in the rsfMRI time-series (excluding

the header row).

Table 4. Confounds file example

gml wml csfl globall  gm?2 .. motionl .. motion24
-1.10036 -0.82036 -1.47967 -1.10691 0.174062 - 1.916362 - -0.64127
-1.3962 -1.06832 -1.32441 -1.3171 0.781524 - -0.44798 - -0.51575
-2.21392 -1.54627 -2.02818 -2.03058 3.209518 - 1.818313 - -0.05313
-0.64252 -0.73947 -0.75407 -0.71124 -0.48225 - -0.42983 - 1.477089
-0.64055 -0.59776 -0.78717 -0.67019 -0.48433 - -0.42332 - -0.50371
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Below is a list of all configuration parameters, divided into two sections: a
section for input file paths and parameters, and a section for processing
parameters. The configuration file is in the YAML format which allows nesting
of key /value pairs. The arrow () indicates that the key on the right is nested in
the key to the left. Each parameter will have its value type, default value, and
dependencies listed. These indicate the type(s) of validation performed on the

parameter. More about validation can be read in Sect. 2.1.1 [p. 39] and Appx. 1.

Input data parameters

participants > file:
string, required, allowed=[‘*.tsv’, ‘*.csv’, ‘*.xls’, ‘*.xlsx']
Path to a tabular file containing a column with participant-ids. When a
{participant id} wildcard substring is requested, then the file path
must contain this template at the place where otherwise the participant-
id would go. This wildcard will be replaced by the actual participant-ids
during execution of the pipeline.

participants > delimiter:

string

Delimiter to use (e.g., ‘\t’ for tab-, or ‘,” for comma-delimited files).

participants > index__column:

string

Name of the column containing the participant-ids.

session:
list[string]
If multiple sessions are to be used for each subject, enter the sessions as
partial paths here. For example, [‘sessl’; ‘sess2’] will replace the
{session} wildcard substring used in time_series and confounds with
both ‘sess1’ and ‘sess2’, similar to how {participant id} is replaced with
the subject-id.

time_series:
string, required, allowed=[‘*.nii’, ‘*.nii.gz’], dependency(modality ==
‘rsfmri’)
Path to a 4D NIfTI image containing the resting-state time-series (x, y,
z, timepoints). The time-series shape and affine must match that of the
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seed and target masks. This field must contain the {participant id}
wildcard substring, as there should be one time-series image per subject.

confounds > file:
string, allowed=[‘*.tsv’, ‘*.csv’'], dependency(modality == ‘rsfmri’)
Path to a delimited (e.g., .tsv for tab-delimited) file with a confound
signal per columns and a 1-line header. Columns can be selected using
the columns parameter. The column length (i.e., number of rows) must
match the length of the timepoints in the signal time-series.

confounds > delimiter:
string, dependency(modality == ‘rsfmri’)

Delimiter to use (e.g., ‘\t’ for tab-, or ‘,” for comma-delimited files).

confounds > columns:
list[string], dependency(modality == ‘rsfmri’)
List of columns that should be used. If left empty, all columns are used.
Otherwise only the selected columns will be used in nuisance signal
regression. A glob pattern (*) can be used to select multiple columns
that match the expression (e.g., ‘motion-*’ includes ‘motion-x’, ‘motion-

? ¢ : )
y’, ‘motion-z’, etc.)

bet__binary_ mask:
string, required, allowed=[‘*.nii’, ‘*.nii.gz’'], dependency(modality ==
‘dmri’)
File path to a BET binary mask file. This field must contain the
{participant id} wildcard substring.

xfm:
string, allowed=[‘*.nii’, ‘*.nii.gz’'], dependency(modality == ‘dmri’)
Transform taking seed space to DTT space (either FLIRT matrix or
FNIRT warpfield). This field must contain the {participant id}
wildcard substring.

inv_ xfm:
string, allowed=[‘*.nii’, ‘*.nii.gz’], dependency(modality == ‘dmri’)
Transform taking DTI space to seed space. This field must contain
{participant _id} wildcard substring.

samples:
string, required, dependency(modality == ‘dmri’)
Merged samples derived from bedpostx output. This field must contain
the {participant id} wildcard substring. Note that this is the same file
path that would otherwise be entered in FSL. It selects all files that
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start with the entered file path (e.g., /path/to/samples/merged will
take all files starting with merged in the /path/to/samples folder).

connectivity:
string, required, allowed=[‘*.npy’, ‘*.npz’], dependency(modality ==
‘connectivity’)
The path to a seed by target connectivity matrix. The number of seed
voxels on the first dimension must match the number of seed voxels in
the seed mask image. The order in which the seed voxels are listed
along the first axis depends on the order that was used to extract the
voxels from the mask (i.e., F- or C-contiguous order). CBPtools
connectivity matrices have the seed voxels in C-order. This field must
contain the {participant id} wildcard substring. The extension must be
either .npy or .npz. If the compressed .npz format is used, the array in
the archive must be named connectivity.npy.

seed__coordinates:
string, required, allowed=[‘*.npy’], dependency(modality == ‘connectivity’)
The path to a 2D NumPy array file with shape of the number of seed
voxels by 3. The file contains the 3D coordinates of each seed voxel in
the order that the seed voxels appear in the connectivity matrix.

masks > seed:
string, required, allowed=[‘*.nii’, ‘*.nii.gz’]
Path to a binary region-of-interest NIfTI image in the same space as the

time-series and target mask.

masks > region__id:
list[integer], dependency(modality in [‘rsfmri’, ‘dmri’])
If an atlas is used as the seed, specify a list of integers containing the
IDs of the regions that should be merged into the seed mask. If only one
ID is given, the voxels carrying that ID in the atlas will become the
seed mask. If multiple IDs are given, a composite binary mask will be
generated of all selected regions in the atlas.

masks > target:
string, allowed=[‘*.nii’, ‘*.nii.gz’], dependency(modality in [‘rsfmri’,
‘dmri’])
Path to a binary NIfTT image covering a target region (e.g., the whole
brain). If left empty, the MNI152 2mm grey-matter mask will be used
as the default target mask.

masks > space:

string, allowed=[‘standard’, ‘native’]
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If native is used, then CBPtools assumes that both seed- and target
masks are in the native space of each individual subject. This requires
the {participant id} wildcard substring to be present in the file path to
the seed and target masks. Note that group results cannot be computed
in native space and are therefore skipped. If standard is used, then the
seed and target masks are assumed to be in the same group template
space (e.g., MNI152 2mm space).

masks > resample:
boolean
Resample the seed and target masks to the space of the input data.
This option will use the NiBabel function
‘nibabel.processing.resample to from’ with mode="nearest’ and
order=0. It is only used for single-subject parcellations
(data.masks.space="native’) when one seed and target mask are given
rather than one seed and target mask per subject. For dMRI data it is
only used on the seed image if the xfm and inv_xfm are not given.

masks > references:
list[string], allowed=[‘*.nii’, ‘*.nii.gz’]
Paths to one or more reference images. These images must be in the
same space as the seed mask, cover the exact same voxels, and have at
least 2 clusters. The reference images will be compared to the group

clustering results. The comparison results will be provided as figures.

Processing parameters

masking »> seed > binarization:
float, default=0.0, dependency(modality in [‘rsfmri’, ‘dmri’])

Threshold above which voxels in the ROI mask image are defined as 1’s.
This is only applied if the mask is not binary.

masking > seed > median__filtering > apply:

boolean, default=False, dependency(modality in [‘rsfmri’, ‘dmri’])

Apply median filtering to the ROI mask.

masking > seed > median__filtering > distance:
integer, default=1, dependency(modality in [‘rsfmri’, ‘dmri’])
Median filtering distance in mm (i.e., the size of the area to compute
the median from for each voxel).

masking > seed > upsample__to > apply:

boolean, default=False, dependency(modality == ‘dmri’)
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Upsample the seed mask to the specified voxel size (e.g., from |[3, 3, 3]
as 3mm isotropic to [1, 1, 1] as lmm isotropic). If left empty or as null,
no upsampling will be done.

masking > seed » upsample__to > voxel__dimensions:
list[float], default=[1, 1, 1], dependency(modality == ‘dmri’)

The voxel dimensions to which the seed mask should be upsampled.

masking > target > binarization:
float, default=0.0, dependency(modality in [‘rsfmri’, ‘dmri’])
Threshold above which voxels in the target mask image are defined as
1’s. This is only applied if the mask is not binary.

masking > target » remove__seed > apply:

boolean, default=False, dependency(modality in [‘rsfmri’, ‘dmri’])

Remove the seed voxels from the target mask.

masking > target > remove__seed > distance:
integer, default=0, dependency(modality in [‘rsfmri’, ‘dmri’])
Expand the border around the seed mask (in millimetre) for removal
from the target mask. This should only be applied if the input time-
series data is smoothed, using the smoothing kernel as a value for this

parameter.

masking > target » subsampling:
boolean, default=True, dependency(modality == ‘rsfmri’)
Apply subsampling to the target mask to improve computational
efficiency at minimal loss of specificity. This removes every second voxel
from the mask and is only recommended if the data has been smoothed.

masking > target > downsample__to > apply:

boolean, default=False, dependency(modality == ‘dmri’)
Downsample the target mask to the specified voxel size, similar to how
upsample seed to works.

masking > target > downsample_ to > voxel__dimesnions:
list[float], default=[3, 3, 3], dependency(modality == ‘dmri’)

The voxel dimensions to which the target mask should be downsampled.

connectivity > low__variance__error > apply:

boolean, default=True, dependency(modality == ‘rsfmri’)

When more than the specified ratio of voxels within the seed has
extremely low or no variance over the entire time course, the processing
of this participant will not continue. A detailed error report is provided
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once all connectivity is processed and further processing is halted until
the problems are resolved.

connectivity > low__variance__error > in__seed:
float, default=0.05, dependency(modality == ‘rsfmri’)

Ratio of allowed low-variance voxels occurring within the seed region.

connectivity > low__variance__error > in__target:
float, default=0.1, dependency(modality == ‘rsfmri’)

Ratio of allowed low-variance voxels occurring within the target region.

connectivity > band__pass_ filtering > apply:

boolean, default=False, dependency(modality == ‘rsfmri’)

Perform band-pass filtering on the signal time-series.

connectivity > band__pass_ filtering > band:
list[float], default=[0.01, 0.08], dependency(modality == ‘rsfmri’)

High- and low-pass value (respectively) for the band-pass filter. Note
that if this value is set, TR should also be defined.

connectivity > band_ pass_ filtering > tr:

float, default=None, dependency(modality == ‘rsfmri’)

Repetition time in seconds

connectivity > smoothing > apply:

boolean, default=False, dependency(modality == ‘rsfmri’)

Apply smoothing to the signal time-series.

connectivity > smoothing > fwhm:

integer, default=5, dependency(modality == ‘rsfmri’)

FWHM kernel value for smoothing.

connectivity > arctanh__transform > apply:

boolean, default=True, dependency(modality == ‘rsfmri’)

Apply an arctanh transform to the connectivity matrix.

connectivity > pca__transform > apply:

boolean, default=False, dependency(modality in [‘rsfmri’, ‘dmri’])

Apply a PCA transform to the connectivity matrix.

connectivity > pca_ transform > components:

float or integer, default=0.95, dependency(modality in [‘rsfmri’, ‘dmri’l])
Number of components to keep (if an integer above or at 1) or amount
of explained variance (if a float below 1). This value is equivalent to
n_components in sklearn.decomposition.PCA.
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connectivity > dist__thresh:
float, default=5.0, dependency(modality == ‘dmri’)
Discards samples shorter than this threshold in millimetre (see
probtrackx2 documentation).

connectivity > loop__check:
boolean, default=True, dependency(modality == ‘dmri’)
Perform loop checks on paths — slower, but allows curvature threshold
(see probtrackx2 documentation).

connectivity > c_ thresh:
float, default=0.2, dependency(modality == ‘dmri’)

Curvature threshold (see probtrackx2 documentation).

connectivity > step__length:
float, default=0.5, dependency(modality == ‘dmri’)

Step length in millimeter (see probtrackx2 documentation).

connectivity > n_ samples:
integer, default=5000, dependency(modality == ‘dmri’)

Number of samples (see probtrackx2 documentation).

connectivity > n__steps:
integer, default=2000, dependency(modality == ‘dmri’)

Number of steps per sample (see probtrackx2 documentation).

connectivity > correct__path_ distribution:
boolean, default=True, dependency(modality == ‘dmri’)
Correct path distribution for the length of the pathways (see
probtrackx2 documentation).

connectivity > cubic__transform > apply:

boolean, default=True, dependency(modality == ‘dmri’)

Apply a cubic transformation on the connectivity matrix.

connectivity > cleanup_ fsl:

boolean, default=True, dependency(modality == ‘dmri’)
Remove all files created by probtrackx2 (except fdt matrix2.dot) after
the connectivity matrix has been extracted.

clustering » method:

string, default='kmeans’, allowed=[‘kmeans’, ‘spectral’, ‘agglomerative’]
Clustering method to be used, either k-means, spectral clustering, or
agglomerative (hierarchical) clustering.
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clustering > n__clusters:
list[integer], default=[], required
A list of cluster numbers to be evaluated (entered as |2, 3, 8] to receive
a 2, 3, and 8-cluster solution).

clustering > cluster__options > algorithm:

string, default='auto’, allowed=[‘auto’, ‘full’, ‘elkan’]

k-means algorithm to use (see sklearn.cluster.KMeans).

clustering > cluster__options > init:

string, default='k-means++’, allowed=[‘k-means++’, ‘random’]

Method for initialization (see sklearn.cluster.KMeans).

clustering > cluster__options » max__iter:
integer, default=10000

Maximum number of iterations of the k-means algorithm for a single
run (see sklearn.cluster.KMeans).

clustering > cluster__options > n__init:
integer, default=256

Number of times the k-means algorithm will be run with different
centroid seeds (see sklearn.cluster. KMeans or
sklearn.cluster.SpectralClustering).

clustering > cluster__options > kernel:

string, default='nearest neigbors’, allowed=[‘additive chi2’, ‘chi2’,
‘linear’, ‘polynomial’, ‘rbf’, ‘laplacian’, ‘sigmoid’, ‘cosine’,
‘nearest neighbors’, ‘precomputed’, ‘precomputed nearest neighbors’]

Kernel to be used (see the affinity parameter in
sklearn.cluster.SpectralClustering).

clustering > cluster__options > gamma:
float, default=None

Kernel coefficient for rbf, poly, sigmoid, Laplacian, and chi2 kernels.
Ignored when kernel="nearest neighbors’ (see
sklearn.cluster.SpectralClustering).

clustering > cluster__options » n_ neighbors:
integer, default=10

Number of neighbours to use when constructing the affinity matrix
using the nearest neighbours method (see
sklearn.cluster.SpectralClustering).
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clustering > cluster__options > assign__labels:
string, default='kmeans’, allowed=[‘kmeans’, ‘discretize’]
The strategy to use to assign labels in the embedding space (see
sklearn.cluster.SpectralClustering).

clustering > cluster__options > degree:
float, default=3.0

Degree of the polynomial kernel (see sklearn.cluster.SpectralClustering).

clustering > cluster__options > coefO:
float, default=1.0
Zero coefficient for polynomial and sigmoid kernels (see
sklearn.cluster.SpectralClustering).

clustering > cluster__options > eigen_ tol:
float, default=le-10
Stopping criterion for eigendecomposition of the Laplacian matrix when
eigen solver=’arpack’ (see sklearn.cluster.SpectralClustering).

clustering > cluster__options > eigen__solver:
string, default=None, allowed=[None, ‘arpack’, ‘lobpcg’, ‘amg’]
The eigenvalue decomposition strategy to use. AMG requires pyamg to
be installed (see sklearn.cluster.SpectralClustering).

clustering > cluster__options > distance__metric:
string, default='euclidean’, allowed=[‘euclidean’, ‘11’, ‘12’, ‘manhattan’,
‘cosine’]
Metric to compute the linkage. If linkage is ‘ward’, only ‘euclidean’ is
accepted (see sklearn.cluster. AgglomerativeClustering).

clustering > cluster__options > linkage:
string, default='ward’, allowed=[‘ward’, ‘complete’, ‘average’, ‘single’]
Which linkage criterion to use (see
sklearn.cluster. AgglomerativeClustering).

clustering » grouping > linkage:
string, default='complete’, allowed=[‘complete’, ‘average’, ‘single’]

The linkage algorithm to use (see scipy.cluster.hierarchy.linkage).

clustering > grouping > method:

string, default='mode’, allowed=[‘mode’, ‘agglomerative’]

Method for grouping the clustering results of all subjects.

clustering > validity > internal:

list[string], default=[’silhouette score’], allowed=[‘silhouette score’,
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‘davies bouldin_score’, ‘calinski harabasz_score’]

List of internal validity metrics to use for cluster validity assessment.

clustering > validity > similarity:
string, default='adjusted rand score’, allowed=[‘adjusted rand score’,
‘adjusted mutual info score’, ‘v _measure score’]
Similarity metric to use to generate between-subject cluster comparisons
and subject to group-level cluster comparisons.

clustering > report > figure_ format:

‘ ’

string, default='png’, allowed=[‘png’, ‘svg’, ‘pdf’, ‘ps’, ‘eps’]

Format of the output figures generated for the summary.

clustering > report > individual__ plots:

boolean, default=False
Generate cluster-labelled ROI voxel plots for each individual subject (in
addition to the group clustering results).

clustering > report > benchmark:

boolean, default=False
Benchmark the execution of each workflow task. The psutil package
must be installed for benchmarking.

clustering » report > compress_ output:

boolean, default=True
Compress interim output (i.e., NIfTT images and NumPy arrays) to
reduce the file size. This comes at the cost of slower processing speed.
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Appendix 5: Task input, output, and parameters

Below is a list of all tasks, detailing their parameters, input files, output files,
as including logging and benchmarking output files. Some task input file paths
are defined in the configuration file (e.g., data.masks.seed in the masking task),
hence their input is listed in the parameters section. The output sections always
refer to the relative (to the project directory) file path of the file that is created.
Parameters refer to the key:value pairs in the YAML configuration file where
each dot indicates that the key on the right side is nested into the key on the left

side.

Wildcards (the words between curly brackets, such as {participant id} and
{session} ) are placeholders for variable content. For example, {participant_id} ig
replaced with the participant-id in the data set (such as for file path completion)
and {session} ijs replaced with the strings in the data.session field. This applies

to the output, as well as the logging and benchmark output files.

Table 5. Masking task parameters, input, and output

Parameters data.masks.region id (optional)
parameters.masking.seed.binarization (optional)
parameters.masking.seed.median _filtering (optional)
parameters.masking.seed.upsample to (optional, dMRI only)
parameters.masking.target.binarization (optional)
parameters.masking.target.remove seed (optional)
parameters.masking.target.subsampling (optional, rsfMRI only)
parameters.masking.target.downsample to (optional, dMRI only)

Input data.masks.seed
data.masks.target (optional)

Output seed mask.nii.gz
target mask.nii.gz
seed coordinates.npy
highres seed mask.nii.gz (optional, AMRI only)

Logging log/process masks _rsfmri.log (rstMRI only)
log/process _masks dmri.log (AMRI only)
Benchmarking benchmarks/process _masks _rsfmri.log (rstMRI only)

benchmarks/process masks.dmri.log (AMRI only)

Table 6. rstMRI Connectivity task parameters, input, and output

Parameters data.session (optional)
parameters.report.compress output (optional)
parameters.connectivity.smoothing (optional)
parameters.connectivity.low variance error
parameters.connectivity.band pass_filtering (optional)
parameters.connectivity.pca transform (optional)

parameters.connectivity.arctanh transform (optional)

Input seed _mask.nii.gz
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target mask.nii.gz
data.time series

data.confounds (optional)

Output individual/{participant id}/connectivity.npz

individual/{participant_id}/connectivity {session}.npz (temporary file; multi-

session)
Logging log/{participant_id}.connectivity rsfmri.log (single-session)

log/{part
log/{participant_id}.merge_sessions.log (multi-session)

ipant _id}.{session}.connectivity rsfmri.log (multi-session)

Benchmarking benchmarks/{participant id}.connectivity rsfmri.log (single-session)
benchmarks/{participant id}.{session}.connectivity rsfmri.log (multi-session)
benchmarks/{participant id}.merge_ sessions.log (multi-session)

Table 7. dMRI Connectivity task parameters, input, and output

Parameters parameters.connectivity.dist thresh
parameters.connectivity.c thresh
parameters.connectivity.step length
parameters.connectivity.n samples
parameters.connectivity.n_steps
parameters.connectivity.loop check
parameters.connectivity.correct  path distribution
parameters.connectivity.cubic transform (optional)
parameters.connectivity.pca_transform (npti()nal)
parameters.report.compress__output (()ptional)

parameters.connectivity.cleanup fsl (optional)

Input seed_mask.nii.gz

highres seed mask.nii.gz (optional)

target mask.

.92
data.bet  binary mask
data.xfm

data.inv_ xfm

data.samples

Output individual /{participant_id}/probirackz2 (temporary folder)
individual/{participant_id}/problrackz?2 {session} (temporary folder; multi-session)
individual/{par

pant id}/connect

individual/{participant id}/connectivity {session}.npz (temporary file; multi-session)

Logging log/{participant id}.connectivity dmri.log (single-session)
log/{participant id}.{session}.connectivity dmri.log (multi-session)
log/{participant id}.merge sessions.log (multi-session)

Benchmarking benchmarks/{participant_id}.probirackz2.log (single-session)
benchmarks/{participant_id}.{session}.probirackz2.log (multi-session)
benchmarks/{participant _id}.connectivity dmri.log (single-session)
benchmarks/{participant id}.{session}.connectivity dmri.log (multi-session)

benchmarks/{participant_id}.merge sessions.log (multi-session)

Table 8. Clustering (k-means) task parameters, input, and output

Parameters parameters.clustering.n clusters
parameters.clustering.cluster options.algorithm
parameters.clustering.cluster options.init
parameters.clustering.cluster options.max _iter
parameters.clustering.cluster options.n_ init
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Input individual/{participant id}/connectivity.npz

Output individual/{participant_id}/{n_clusters}cluster labels.npy
Logging log/{participant_id}.k{n_clusters}.kmeans clustering.log
Benchmarking benchmarks/{participant _id}.k{n_clusters}.kmeans clustering.log

Table 9. Clustering (spectral) task parameters, input, and output

Parameters parameters.clustering.n_ clusters
parameters.clustering.cluster options.n _init
parameters.clustering.cluster options.kernel
parameters.clustering.cluster options.gamma
parameters.clustering.cluster options.n_neighbors
parameters.clustering.cluster options.assign labels
parameters.clustering.cluster options.degree
parameters.clustering.cluster _options.coef0
parameters.clustering.cluster options.eigen tol

parameters.clustering.cluster options.eigen solver

Input individual/{participant_id}/connectivity.npz

Output individual/{participant id}/{n_clusters}cluster labels.npy
Logging log/{participant id}.k{n clusters}.spectral clustering.log
Benchmarking benchmarks/{participant id}.k{n clusters}.spectral clustering.log

Table 10. Clustering (agglomerative) task parameters, input, and output

Parameters parameters.clustering.n clusters
parameters.clustering.cluster options.distance metric
parameters.clustering.cluster options.linkage

Input individual/{participant_id}/connectivity.npz

Output individual/{participant id}/{n _clusters}cluster labels.npy

Logging log/{participant id}.k{n clusters}.agglomerative clustering.log
Benchmarking benchmarks/{participant_id}.k{n clusters}.agglomerative clustering.log

Table 11. Grouping task parameters, input, and output

Parameters parameters.clustering.grouping.linkage

parameters.clustering.grouping.method

Input individual/{participant id}/{n clusters}cluster labels.npy (for all subjects at once)
data.seed coordinates (connectivity only)

Output group/{n_ clusters}clusters/labels.npz
group/{n_ clusters}clusters/labeled roi.nii.gz

Logging log/k{n _clusters}.group level clustering.log

Benchmarking benchmarks/k{n_ clusters}.group level clustering.log

Table 12. Validity task parameters, input, and output

Parameters parameters.clustering.validity.internal
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Input individual/{participant id}/connectivity.npz
individual/{participant id}/{n _clusters}cluster labels.npy (for all n_ cluster
solutions)
Output individual/{participant id}/internal wvalidity.tsv (temporary file)

individual/internal _validity.tsv (merged over all subjects)

Benchmarking benchmarks/{participant id}.internal validity.log
benchmarks/merge_internal validity.log

Table 13. Similarity task parameters, input, and output

Parameters data.references (optional)
parameters.clustering.validity.similarity
parameters.clustering.n_ clusters

Input individual/{participant_id}/{n _clusters}cluster labels.npy

Output group/{n_ clusters}clusters/individual _similarity.npy
group/group similarity.tsv

group/cophenetic correlation.tsv

group/reference similarity.tsv (optional)
Benchmarking benchmarks/k{n_clusters}.individual _similarity.log

benchmarks/group similarity.log

benchmarks/reference similarity.log (optional)

Table 14. Report task parameters, input, and output

Parameters parameters.report.figure format
parameters.clustering.validity.similarity
parameters.clustering.n clusters

Input seed mask.npy
seed_ coordinates.npy (rstMRI and dMRI only)
data.seed coordinates (connectivity only)
group/{n_ clusters}clusters/individual _similarity.npy
group/group__similarity.tsv
group/cophenetic correlation.tsv
group/reference similarity.tsv (optional)
individual /internal validity.tsv

Output individual/internal_validity {metric}.[png, svg, pdf, ps, eps]
group/{n_ clusters}clusters/individual similarity heatmap.png
group/{n_ clusters}clusters/individual _similarity clustermap.png
group/group _similarity.[png, svg, pdf, ps, eps]
group/relabeling accuracy.[png, svg, pdf, ps, eps]
group/cophenetic _correlation.[png, svg, pdf, ps, eps]
group/{n_ clusters}clusters/vozel plot {view}.[png, svg, pdf, ps, eps]
individual/{participant id}/{n _clusters}cluster voxel plot {view}..[png, svg, pdf, ps,
eps] (optional)
group/reference similarity. [png, svg, pdf, ps, eps]

Benchmarking benchmarks/{metric}.plot internal wvalidity.log
benchmarks/k{n _clusters}.plot individual similarity.log
benchmarks/plot_group similarity.log
benchmarks/k{n_clusters}.{view}.plot_labeled roi.log
benchmarks/{participant id}.k{n _clusters}.{view}.plot individual labeled roi.log
(optional)

benchmarks/plot_reference similarity.log (optional)
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Appendix 6: Benchmark results

All benchmarking results are separated by CBPtools processing task and
pertain to the preSMA-SMA parcellation, either for the rsfMRI modality or the
dMRI modality.

Table 15. Maximum RSS in MB (rsfMRI)

task mean std min max n jobs
process masks 134.43 - - - 1
connectivity 468.99 637.46 205.34 35324 300
kmeans clustering 393.53 39.5986 318.15 464.35 1200
internal validity 298.86 11.713 283.92 373.33 300
group-level clustering 152.99 2.34687 149.63 155.21 4
group similarity 147.43 - - - 1
plot individual 167.63 0.180278 167.5 167.94 4
similarity

plot group similarity 134.37 - - - 1
plot labelled ROI 158.79 0.244233 158.11 159.27 24
plot internal validity 137.63 2.22257 134.51 139.52 3

Table 16. Maximum VMS in MB (rsfMRI)

task mean std min max n jobs
process masks 3191.87 - - - 1
connectivity 7465.29 36.2322 6958.66 7556.79 300
kmeans clustering 3644.03 38.031 3599.16 3676.32 1200
internal validity 3495.10 24.345 3459.93 3564.05 300
group-level clustering 3322.00 31.1755 3268 3340.02 4
group similarity 3338.63 - - -

plot individual 3372.64 0 3372.64 3372.64 4
similarity

plot group similarity 3191.89 - - - 1
plot labelled ROI 3383.47 0.0128493 3383.45 3383.5 24
plot internal validity 3261.89 49.4904 3191.9 3296.89 3

Table 17. Maximum USS in MB (rsfMRI)

task mean std min max n jobs
process masks 95.21 - - - 1
connectivity 427.68 642.234 162.85 3490.46 300
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kmeans clustering 352.90 37.9777 276.42 418.92 1200
internal validity 257.04 11.8793 240.17 332.17 300
group-level clustering 109.41 2.91085 105.21 112.8 4
group similarity 102.34 - - - 1
plot individual 124.50 1.74108 123.23 127.49 4
similarity
plot group similarity 90.58 - - - 1
plot labelled ROI 114.10 0.109287 113.89 114.25 24
plot internal validity 92.98 1.66349 90.64 94.36 3
Table 18. Maximum PSS in MB (rsfMRI)
task mean std min max n jobs
process masks 114.06 - - - 1
connectivity 433.62 642.058 173.45 3497.87 300
kmeans clustering 367.71 37.9632 291.49 434.04 1200
internal validity 272.84 11.7443 255.77 346.41 300
group-level clustering 120.80 4.83297 114.68 126.69 4
group similarity 110.40 - - - 1
plot individual 140.05 6.08659 133.26 147 4
similarity
plot group similarity 98.17 - - - 1
plot labelled ROI 116.17 0.71444 115.42 117.78 24
plot internal validity 99.26 1.82353 96.69 100.73 3
Table 19. Maximum CPU load per second in MB (rsfMRI)
task mean std min max n jobs
process masks 0.00 - - - 1
connectivity 3.36 3.94097 0.54 21.85 300
kmeans clustering 260.10 48.1961 190.88 428.98 1200
internal validity 369.16 25.1319 300.23 449.27 300
group-level clustering 36.26 30.492 0 83.56 4
group similarity 92.30 - - -
plot individual 111.55 2.65929 107.93 115.21 4
similarity
plot group similarity 0.00 - - - 1
plot labelled ROI 71.60 9.28152 57.32 86.26 24
plot internal validity 0.00 0 0 0 3
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Table 20. Maximum RSS in MB (dMRI)

task mean std min max n jobs
process masks 134.91 - - - 1
connectivity 1151.82 108.917 859.34 1503.99 300
kmeans clustering 748.99 97.3975 547.84 915.24 1200
internal validity 468.60 31.9433 418.03 613.05 300
group-level clustering 151.87 2.41363 149.03 155.39 4
group similarity 146.80 - - - 1
plot individual 164.48 5.83578 154.38 168.08 4
similarity
plot group similarity 134.84 - - - 1
plot labelled ROI 158.76 0.30115 158.21 159.38 24
plot internal validity 134.50 0.257207 134.14 134.7 3
Table 21. Maximum VMS in MB (dMRI)
task mean std min max n jobs
process masks 3191.92 - - - 1
connectivity 4410.93 83.9623 4217.11 4737.08 300
kmeans clustering 4030.72 88.4106 3733.02 4098.15 1200
internal validity 3696.22 38.0761 3636.38 3829.43 300
group-level clustering 3304.01 36.005 3267.99 3340.02 4
group similarity 3338.65 - - - 1
plot individual similarity = 3355.92 28.9974 3305.7 3372.68 4
plot group similarity 3191.91 - - - 1
plot labelled ROI 3383.48 0.0495798 3383.25 3383.51 24
plot internal validity 3191.90 0.00816497  3191.89 3191.91 3
Table 22. Maximum USS in MB (dMRI)
task mean std min max n jobs
process masks 93.45 - - - 1
connectivity 1109.09 109.136 821.17 1463.93 300
kmeans clustering 707.34 97.206 504.75 869.72 1200
internal validity 425.04 31.7783 373.96 570 300
group-level clustering 108.36 1.9292 106.6 111.35 4
group similarity 103.77 - - - 1
plot individual 121.44 5.85576 111.75 127.2 4
similarity
plot group similarity 91.03 - - - 1
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plot labelled ROI 114.06 0.187705 113.59 114.66 24
plot internal validity 90.72 0.139603 90.52 90.83 3
Table 23. Maximum PSS in MB (dMRI)
task mean std min max n jobs
process masks 113.51 - - - 1
connectivity 1128.20 109.084 839.71 1482.42 300
kmeans clustering 723.25 97.2084 519.75 883.56 1200
internal validity 440.07 31.6481 391.82 585.34 300
group-level clustering 118.84 2.76936 115.67 122.74 4
group similarity 111.25 - - - 1
plot individual 135.31 9.35706 120.77 146.83 4
similarity
plot group similarity 99.00 - - - 1
plot labelled ROI 116.08 0.71373 115.54 118.66 24
plot internal validity 97.63 0.417692 97.04 97.95 3
Table 24. Maximum CPU load per second in MB (dMRI)
task mean std min max n jobs
process masks 0.00 - - - 1
connectivity 98.11 1.71986 85.59 101.79 300
kmeans clustering 208.21 32.7676 162.54 295.77 1200
internal validity 365.97 13.5011 343.32 418.99 300
group-level clustering 32.65 35.3829 0 84.58 4
group similarity 88.92 - - - 1
plot individual 91.03 52.8042 0 128.09 4
similarity
plot group similarity 0.00 - - - 1
plot labelled ROI 68.86 8.37796 49.62 80.61 24
plot internal validity 0.00 0 0 0 3
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Appendix 7: Software Mentions

This appendix contains a list of all software that was mentioned in this work.
Where possible, the GitHub repository is mentioned for open-source software. For
closed source software, or software not available on GitHub (or any other software

forges) the website where it can be acquired is linked. All listed software except
MATLAB can be used free of charge.

AFNI (Analysis of Functional NeuroImages). Software suite for the analysis and
display of anatomical and functional MRI data. https://github.com/afni/afni

ANTS (Advanced Normalization Tools). A toolkit for medical image registration and
segmentation. https://github.com/ANTsX/ANTs

BrainMap. A database of published functional and structural neuroimaging
experiments with coordinate-based results. http://www.brainmap.org/

dMRIPrep. Pipeline for pre-processing of diverse dMRI data.
https://github.com/nipreps/dmriprep

FIX (FMRIB’s ICA-based Xnoiseifier). Tool for automatic classification of ICA
components for denoising. https://github.com/jelman/FSL_FIX

fMRIPrep. Pre-processing pipeline for fMRI data.
https://github.com/poldracklab/fmriprep

FSL. Library of analysis tools for fMRI, MRI, and DTI brain imaging data.
https:/fsl.fmrib.ox.ac.uk/fsl/fslwiki/
* probtrackX2. Tool for performing probabilistic tractography on bedpostx
output.
* bedpostX. Bayesian estimation of diffusion parameters obtained using
sampling techniques

FreeSurfer. Software for the analysis and visualization of neuroimaging data from
cross-sectional and longitudinal studies. https://github.com/freesurfer/freesurfer

HTCondor. Distributed high throughput computing system.
https://github.com/htcondor/htcondor

ICA-AROMA (ICA-based Automatic Removal Of Motion Artifacts). Method (and
software) for identification and removal of motion-related independent
components from fMRI data. https://github.com/maartenmennes/ICA-AROMA

JuBrain Anatomy Toolbox. An SPM plugin for combining probabilistic
cytoarchitectonic maps and functional imaging data.
https://github.com/inm7/jubrain-anatomy-toolbox
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Matlab. Software and programming language for matrix and array mathematics.
https://www.mathworks.com/products/matlab.html

Neurodebian. Software delivery platform for Neuroscience.
https://github.com/neurodebian/neurodebian

NeuroVault. Web database for statistical maps.
https://github.com/NeuroVault/NeuroVault & https://www.neurovault.org/

NeuroSynth. Platform for large-scale automated synthesis of fMRI data.
https://neurosynth.org/

Python. High-level general-purpose programming language for quick and efficient
software integration. https://www.python.org/

Slurm. Highly scalable workload manager. https://github.com/SchedMD/slurm
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Appendix 8: Python Package Mentions

This appendix contains a list of all python packages that were mentioned in
this work. Note that all first mentions of the packages are underlined in green.
All packages can be installed by name using the pip software (i.e., pip install
<name> or pip3 install <name>) FEach mention links to the package’s GitHub

repository, as all packages are open source.

matplotlib. Library for static, animated, and interactive plots.
https://github.com/matplotlib/matplotlib

nibabel. Utility for read/write access to some common neuroimaging file formats.
https://github.com/nipy/nibabel

nitime. Timeseries analysis for neuroimaging data. https://github.com/nipy/nitime

nipype. Workflows and interfaces for neuroimaging packages.
https://github.com/nipy/nipype

numpy. Package for scientific computing in Python. https://github.com/numpy/numpy

pandas. Data analysis and manipulation library based on R data.frame objects.
https://github.com/pandas-dev/pandas

pip. Python package installer. https://github.com/pypa/pip

psutil. Library for process and system monitoring. https://github.com/giampaolo/psutil

pyyaml. YAML parser and emitter for Python. https://github.com/yaml/pyyaml

scipy. Library for mathematics, science, and engineering. https://github.com/scipy/scipy

scikit-learn. Machine learning in Python. https://github.com/scikit-learn/scikit-learn

snakemake. Workflow management system. https://github.com/snakemake/snakemake

seaborn. Statistical data visualization using matplotlib.
https://github.com/mwaskom/seaborn

virtualenv (venv). Virtual Python environment builder.
https://github.com/pypa/virtualenv

Appendix 9: Usage Example

For the following example pre-processed rsfMRI and dMRI data has been
supplied for 100 randomly drawn subjects out of the 300 subjects described in
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Sect. 3 [p. 78] (mean age 28.46, 50 females, no significant age (t=-1.5, p=0.14)
and education (t=-1.04, p=.30) difference between genders). Furthermore
included are the three region-of-interest (ROI) NIfTI images used in this work, as
well as the CBPtools configuration files used to process the data. The example
data set was prepared and uploaded using DataLad version 0.12.0rc6 (Halchenko
et al 2019) and has a total size of 243GB. The example data can be downloaded
using Datal.ad, which can be installed using apt-get or pip (note when using pip,
the git-annex dependency must be installed manually; see

https://www.datalad.org/get datalad.html). The example data is located on a

remote location linked to through GitHub
(https://github.com/inm7/cbptoolsexample-data).

$ datalad install --get -data --source https://github.com/inm7/cbptools -example
-data.git

Further downloading options (i.e., downloading only parts of the data) are
outlined in the online documentation (see External Resources [p. 16]). A CBPtools
project can be created using any of the provided configuration files or a custom
configuration file. In this example, the preSMA-SMA ROI with the rsfMRI data
will be used (i.e., the ‘config_r_ presmasma_rsfmri.yaml’ configuration file),
although it can be substituted by any other configuration file to use different
settings and data.

$ cd cbptools -example -data

$ cbptools create --config config r_presma sma_rsfmri.yaml --workdir
/path/to/workdir

The workdir parameter is used to define where the project files (and eventual
output data) will be stored. This can be any directory on the file system with

read and write access.

Any errors and warnings occurring during the setup will be logged. The log
is available either in the current directory (if the setup fails) or in the log folder
inside the workdir (if the setup succeeds). If there are any errors, the project will
not be created until they are resolved. If there are no validation problems, the
project will be created. Change directory to the workdir and execute the workflow

(contained in the Snakefile) using Snakemake, which is installed as a dependency
of CBPtools.

$ cd /path/to/workdir
$  snakemake
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For more customization of the Snakemake execution, visit the Snakemake
guide (Koster 2019) or the execution section of the CBPtools online

documentation.
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